Direct programming via the overexpression of transcription factors (TFs) aims to control cell fate at a precision that will be instrumental for clinical applications. However, direct programming of terminal fates remains an obscure process. Taking advantage of the rapid and uniquely efficient programming of spinal motor neurons by overexpression of Ngn2, Isl1 and Lhx3, we have characterized gene expression, chromatin and transcription factor binding time-course dynamics during complete motor neuron programming. Our studies point to a surprisingly dynamic programming process. Promoter chromatin and expression analysis reveals at least three distinct phases of gene activation, while programming factor binding shifts from one set of targets to another, controlling regulatory region activity and gene expression. Furthermore, our evidence suggest that the enhancers and genes activated in the final stage of motor neuron processing are dependent on the combined activities of Isl1 and Lhx3 factors with Ebf and Onecut TFs that are themselves activated midway through the programming process. Our results suggest an unexpected multi-stage model of motor neuron programming in which the programming TFs require activation of a set of intermediate regulators before they complete the programming process. Overall design: Gene expression was characterized by single-cell RNA-seq during the direct programming of ES cells into motor neurons using over-expression of Ngn2-Isl1-Lhx3 programming factors.
A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming from Embryonic Stem Cells.
Specimen part, Cell line, Treatment, Subject
View SamplesDirect programming via the overexpression of transcription factors (TFs) aims to control cell fate at a precision that will be instrumental for clinical applications. However, direct programming of terminal fates remains an obscure process. Taking advantage of the rapid and uniquely efficient programming of spinal motor neurons by overexpression of Ngn2, Isl1 and Lhx3, we have characterized gene expression, chromatin and transcription factor binding time-course dynamics during complete motor neuron programming. Our studies point to a surprisingly dynamic programming process. Promoter chromatin and expression analysis reveals at least three distinct phases of gene activation, while programming factor binding shifts from one set of targets to another, controlling regulatory region activity and gene expression. Furthermore, our evidence suggest that the enhancers and genes activated in the final stage of motor neuron processing are dependent on the combined activities of Isl1 and Lhx3 factors with Ebf and Onecut TFs that are themselves activated midway through the programming process. Our results suggest an unexpected multi-stage model of motor neuron programming in which the programming TFs require activation of a set of intermediate regulators before they complete the programming process. Overall design: For bulk cell RNA-seq analysis, cells were collected at different time points after NIL induction and RNA isolated using TRIzol LS (Life Technologies) followed by purification using Qiagen RNAeasy kit
A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming from Embryonic Stem Cells.
Specimen part, Cell line, Subject
View SamplesMicroarray is widely used to monitor gene expression changes in breast cancer. The transcriptomic changes in breast cancer is commonly occured during the transition of normal cells to cancerous cells. This is the first study on gene expression profiling of multi ethnic of Malaysian breast cancer patients (Malays, Chinese and Indian). We aim to identify differentially expressed genes between tumors and normal tissues. We have identified a set of 33 significant differentially expressed genes in the tumor vs. normal group at p<0.001.
Gene expression patterns distinguish breast carcinomas from normal breast tissues: the Malaysian context.
Specimen part, Disease stage, Race
View SamplesDifferent fusion oncogenes in acute myeloid leukemia (AML) have distinct clinical and laboratory features suggesting different modes of malignant transformation. Here we compare the in vitro effects of representatives of major groups of AML fusion oncogenes on primary human CD34+ cells.
In vitro transformation of primary human CD34+ cells by AML fusion oncogenes: early gene expression profiling reveals possible drug target in AML.
Specimen part
View SamplesLuminal breast cancers express estrogen (ER) and progesterone (PR) receptors, and respond to endocrine therapies. However, some ER+PR+ tumors display intrinsic or acquired resistance, possibly related to PR. Two PR isoforms, PR-A and PR-B, regulate distinct gene subsets that may differentially influence tumor fate. A high PR-A:PR-B ratio is associated with poor prognosis and tamoxifen resistance. We speculate that excessive PR-A marks tumors that will relapse early. Here we address mechanisms by which PR-A regulate transcription, focusing on SUMOylation. We use receptor mutants and synthetic promoter/reporters to show that SUMOylation deficiency or the deSUMOylase SENP1 enhance transcription by PR-A, independent of the receptors dimerization interface or DNA binding domain. De-SUMOylation exposes the agonist properties of the antiprogestin RU486. Thus, on synthetic promoters, SUMOylation functions as an independent brake on transcription by PR-A. What about PR-A SUMOylation of endogenous human breast cancer genes? To study these, we used gene expression profiling. Surprisingly, PR-A SUMOylation influences progestin target genes differentially, with some upregulated, others downregulated, and others unaffected. Hormone-independent gene regulation is also PR-A SUMOylation dependent. Several SUMOylated genes were analyzed in clinical breast cancer database. In sum, we show that SUMOylation does not simply repress PR-A. Rather, it regulates PR-A activity in a target selective manner including genes associated with poor prognosis, shortened survival, and metastasis.
SUMOylation Regulates Transcription by the Progesterone Receptor A Isoform in a Target Gene Selective Manner.
Specimen part, Treatment
View SamplesInvestigations on the fundamental of malaria parasite biology, such as invasion, growth cycle, metabolism and cell signalling have uncovered a number of potential antimalarial drug targets, including choline kinase, a key enzyme involved in the synthesis of phosphatidylcholine, an important component in parasite membrane compartment.
Effect of choline kinase inhibitor hexadecyltrimethylammonium bromide on Plasmodium falciparum gene expression.
Treatment
View SamplesReliable clinical tests for predicting cancer chemotherapy response are not available and individual markers failed to correctly predict resistance against anticancer agents. We hypothesized that gene expression patterns attributable to chemotherapy-resistant cells can be used as a classification tool for chemoresistance and provide novel candidate genes involved in anthracycline resistance mechanisms. We contrasted the expression profiles of 4 different human tumor cell lines of gastric, pancreatic, colon and breast origin and of their counterparts resistant to the topoisomerase inhibitors daunorubicin or doxorubicin. We also profiled the sensitive parental cells treated with doxorubicin for 24h. We interrogated Affymetrix HGU133A and U95A arrays independently. We applied two independent methods for data normalization and used Prediction Analysis of Microarrays (PAM) for feature selection. In addition, we established data sets related to drug resistance by using a virtual array composed of features represented on both types of oligonucleotide arrays. We identified 71 candidate genes associated with doxorubicine/daunorubicine resistance. To validate the microarray data, we also analyzed the expression of 12 selected genes by quantitative RT-PCR or immunocytochemistry, respectively. While the comparison of drug-sensitive versus drug-resistant cells yields candidates associated with drug resistance, the 24h treatment of sensitive parental cells produced a distinct transcriptional profile related to short-term drug effects.
PSMB7 is associated with anthracycline resistance and is a prognostic biomarker in breast cancer.
No sample metadata fields
View SamplesReliable clinical tests for predicting cancer chemotherapy response are not available and individual markers failed to correctly predict resistance against anticancer agents. We hypothesized that gene expression patterns attributable to chemotherapy-resistant cells can be used as a classification tool for chemoresistance and provide novel candidate genes involved in anthracycline resistance mechanisms. We contrasted the expression profiles of 4 different human tumor cell lines of gastric, pancreatic, colon and breast origin and of their counterparts resistant to the topoisomerase inhibitors daunorubicin or doxorubicin. We also profiled the sensitive parental cells treated with doxorubicin for 24h. We interrogated Affymetrix HGU133A and U95A arrays independently. We applied two independent methods for data normalization and used Prediction Analysis of Microarrays (PAM) for feature selection. In addition, we established data sets related to drug resistance by using a virtual array composed of features represented on both types of oligonucleotide arrays. We identified 71 candidate genes associated with doxorubicine/daunorubicine resistance. To validate the microarray data, we also analyzed the expression of 12 selected genes by quantitative RT-PCR or immunocytochemistry, respectively. While the comparison of drug-sensitive versus drug-resistant cells yields candidates associated with drug resistance, the 24h treatment of sensitive parental cells produced a distinct transcriptional profile related to short-term drug effects.
PSMB7 is associated with anthracycline resistance and is a prognostic biomarker in breast cancer.
No sample metadata fields
View SamplesEndogenous pancreatic multipotent progenitors (PMPs) are ideal candidates for regenerative approaches to compensate for b-cell loss since their b-cell–producing capacities as well as strategic location would eliminate unnecessary invasive manipulations. However, little is known about the status and potentials of PMPs under diabetic conditions. Here we show that b-cell metabolic stress and hyperglycemia enhance the proliferation capacities of adult PMP cells and bias their production of progeny toward b-cells in mouse and human. These effects are dynamic and correlate with functional b-cell regeneration when conditions allow. Overall design: Insulin-positive Glut2-low cell population of adult pancreatic tissue is enriched for PMP cells. Streptozocin (STZ) can enter beta-cells via Glut2 , induce cell death and consequently diabetes. Insulin-positive cells from two groups (STZ-injected experiment and vehicle-injected control, n=3/group) of MIP-GFP transgenic male mice were sorted to Glut2-low (Glut2L) and Glut2-high (Glut2H) by FACS. Total RNA from these samples were extracted for transcriptome analysis.
Diabetes enhances the proliferation of adult pancreatic multipotent progenitor cells and biases their differentiation to more β-cell production.
No sample metadata fields
View SamplesReliable clinical tests for predicting cancer chemotherapy response are not available and individual markers failed to correctly predict resistance against anticancer agents. We hypothesized that gene expression patterns attributable to chemotherapy-resistant cells can be used as a classification tool for chemoresistance and provide novel candidate genes involved in anthracycline resistance mechanisms. We contrasted the expression profiles of 4 different human tumor cell lines of gastric, pancreatic, colon and breast origin and of their counterparts resistant to the topoisomerase inhibitors daunorubicin or doxorubicin. We also profiled the sensitive parental cells treated with doxorubicin for 24h. We interrogated Affymetrix HGU133A and U95A arrays independently. We applied two independent methods for data normalization and used Prediction Analysis of Microarrays (PAM) for feature selection. In addition, we established data sets related to drug resistance by using a virtual array composed of features represented on both types of oligonucleotide arrays. We identified 71 candidate genes associated with doxorubicine/daunorubicine resistance. To validate the microarray data, we also analyzed the expression of 12 selected genes by quantitative RT-PCR or immunocytochemistry, respectively. While the comparison of drug-sensitive versus drug-resistant cells yields candidates associated with drug resistance, the 24h treatment of sensitive parental cells produced a distinct transcriptional profile related to short-term drug effects.
PSMB7 is associated with anthracycline resistance and is a prognostic biomarker in breast cancer.
No sample metadata fields
View Samples