The paired-end next-generation sequencing of all small RNAs of less than 200 nucleotides in length from four different human cell lines (SKOV3ip1, MCF-7, BJ-Tielf, INOF) allowed us to determine the exact sequence(s) and variations of human box C/D snoRNAs (small nucleolar RNAs), revealing processing patterns of this class of molecules. Two distinct groups of box C/D snoRNAs were identified based on the position of their ends with respect to their characteristic boxes and the terminal base pairing potential. Short box C/D snoRNAs start sharply 4 or 5 nucleotides upstream of their box C and end 2 or 3 nucleotides downstream of their box D. In contrast, long box C/D snoRNAs start 5 or 6 nucleotides upstream of their box C and end 4 or 5 nucleotides downstream of their box D, increasing the likelihood of formation of a k-turn between their boxes C and D. Sequencing of SKOV3ip1 cells following the depletions of NOP58, a core box C/D snoRNA-binding protein and of RBFOX2, a splicing factor, shows that the short box C/D snoRNA forms are significantly more affected by the depletion of RBFOX2 while the long snoRNA forms, which display more canonical box C/D snoRNA features, are significantly more affected by the depletion of NOP58. Together the data suggest that box C/D snoRNAs are divided into at least two groups of RNA with distinct maturation and functional preferences. Overall design: Small RNAs (<200 nucleotides) were isolated from different human cell lines that were either untreated or depleted of NOP58 or RBFOX2 using specific siRNAs. The resulting libraries were multiplexed and paired-end sequenced using Illumina HiSeq.
Simultaneous sequencing of coding and noncoding RNA reveals a human transcriptome dominated by a small number of highly expressed noncoding genes.
No sample metadata fields
View SamplesThe heart responds to pathological overload through myocyte hypertrophy. In our study, we found that this response is regulated by cardiac fibroblasts via a novel paracrine mechanism involving plasma membrane calcium ATPase 4 (PMCA4). PMCA4 deletion in mice, both systemically and specifically in fibroblasts, reduces the hypertrophic response to pressure overload; however, knocking out PMCA4 specifically in cardiomyocytes does not produce this effect. Mechanistically, our microarray data on fibroblasts isolated from PMCA4 WT and PMCA4 knockout animals showed that cardiac fibroblasts lacking PMCA4 produce higher levels of secreted frizzled related protein 2 (sFRP2), which inhibits the hypertrophic response in neighbouring cardiomyocytes.
The plasma membrane calcium ATPase 4 signalling in cardiac fibroblasts mediates cardiomyocyte hypertrophy.
Sex, Age, Specimen part
View SamplesSmall molecule BET bromodomain inhibitors (BETi) are actively being pursued in clinical trials for the treatment of a variety of cancers, however, the mechanisms of resistance to targeted BET protein inhibitors remain poorly understood. Using a novel mass spectrometry approach that globally measures kinase signaling at the proteomic level, we evaluated the response of the kinome to targeted BET inhibitor treatment in a panel of BRD4-dependent ovarian carcinoma (OC) cell lines. Despite initial inhibitory effects of BETi, OC cells acquired resistance following sustained treatment with the BETi, JQ1. Through application of Multiplexed Inhibitor Beads (MIBs) and mass spectrometry, we demonstrate that BETi resistance is mediated by adaptive kinome reprogramming, where activation of compensatory pro-survival kinase networks overcomes BET protein inhibition. Furthermore, drug combinations blocking these kinases may prevent or delay the development of drug resistance and enhance the efficacy of BET inhibitor therapy. Overall design: RNAseq was employed to identify changes in kinase RNA expression following short term (48h) or chronic (JQ1R) JQ1 treatment in three different ovarian cancer cell lines.
Resistance to BET Bromodomain Inhibitors Is Mediated by Kinome Reprogramming in Ovarian Cancer.
Cell line, Subject
View SamplesSkeletal muscle regeneration is a highly dynamics process. The study aims at investigating gene expression by endothelial cells and satellite/myogenic cells during this process, in mouse, after a toxic injury
Coupling between Myogenesis and Angiogenesis during Skeletal Muscle Regeneration Is Stimulated by Restorative Macrophages.
Specimen part, Time
View SamplesUterine leiomyomata, or fibroids, are benign tumors of the uterine myometrium that significantly affect up to 30% of reproductive-age women. Despite being the primary cause of hysterectomy in the United States, accounting for up to 200,000 procedures annually, the etiology of leiomyoma remains largely unknown. Due to the lack of an effective medicinal therapy for these tumors, this disease continues to have a tremendous negative impact on womens health. As a basis for understanding leiomyoma pathogenesis and identifying targets for pharmacotherapy, we conducted transcriptional profiling of leiomyoma and unaffected myometrium from humans and Eker rats, the best characterized preclinical model of leiomyoma. A global comparison of mRNA from leiomyoma versus myometrium in human and rat identified a highly significant overlap of dysregulated gene expression in leiomyoma. An unbiased pathway analysis using a method of gene set enrichment based on the Sigpathway algorithm detected the mammalian target of rapamycin (mTOR) pathway as one of the most highly upregulated pathways in both human and rat tumors. Activation of this pathway was confirmed in both human and rat leiomyomata at the protein level via Western. Inhibition of mTOR in female Eker rats with the rapamycin analog WAY-129327 for 2 weeks decreased mTOR signaling and cell proliferation in tumors, and treatment for 4 months significantly decreased tumor incidence, multiplicity and size. These results identify dysregulated mTOR signaling as a component of leiomyoma etiology across species and directly demonstrate the dependence of these tumors on mTOR signaling for growth in the Eker rat. Modulation of this pathway warrants additional investigation as a potential therapy for uterine leiomyoma.
Comparison of human and rat uterine leiomyomata: identification of a dysregulated mammalian target of rapamycin pathway.
No sample metadata fields
View SamplesThe dataset consists of 266 NCCN very low/low or favorable-intermediate risk PCa patients who underwent diagnostic prostate biopsy between 2000 and 2014 and were treated with RP in six community or academic practices: University of Calgary, Cedars-Sinai, Spectrum Health, Cleveland Clinic, MD Anderson Cancer Center and Johns Hopkins. All patients had complete tumor pathology from biopsy and prostatectomy. Low risk PCa was defined as T1c or cT2a, and Gleason score (GS) 6, and PSA < 10ng/ml and favorable-intermediate risk was no greater than predominant GS 3 and percent positive biopsy cores < 50%, and either cT2b-cT2c or PSA 10-20ng/ml.
Validation of the Decipher Test for predicting adverse pathology in candidates for prostate cancer active surveillance.
Age, Specimen part
View SamplesIn Saccharomyces cerevisiae, the maturation of both pre-rRNA and pre-small nucleolar RNAs (pre-snoRNAs) involves common factors, thereby providing a potential mechanism for the coregulation of snoRNA and rRNA synthesis. In this study, we examined the global impact of the double-stranded-RNA-specific RNase Rnt1p, which is required for pre-rRNA processing, on the maturation of all known snoRNAs. In silico searches for Rnt1p cleavage signals, and genome-wide analysis of the Rnt1p-dependent expression profile, identified seven new Rnt1p substrates. Interestingly, two of the newly identified Rnt1p-dependent snoRNAs, snR39 and snR59, are located in the introns of the ribosomal protein genes RPL7A and RPL7B. In vitro and in vivo experiments indicated that snR39 is normally processed from the lariat of RPL7A, suggesting that the expressions of RPL7A and snR39 are linked. In contrast, snR59 is produced by a direct cleavage of the RPL7B pre-mRNA, indicating that a single pre-mRNA transcript cannot be spliced to produce a mature RPL7B mRNA and processed by Rnt1p to produce a mature snR59 simultaneously. The results presented here reveal a new role of yeast RNase III in the processing of intron-encoded snoRNAs that permits independent regulation of the host mRNA and its associated snoRNA.
Genome-wide prediction and analysis of yeast RNase III-dependent snoRNA processing signals.
No sample metadata fields
View SamplesIdentification of genes involved in ocular birth defects remains a challenge. To facilitate the identification of genes associated with cataract, we developed iSyTE (integrated Systems Tool for Eye gene discovery; http://bioinformatics.udel.edu/Research/iSyTE). iSyTE contains microarray gene expression profiles of the mouse embryonic lens as it transitions from the stage of placode invagination to that of vesicle formation. We identified differentially regulated genes by comparing lens microarray profiles to those representing whole embryonic body (WB) without ocular tissue. These were then utilized to generate a ranked list of lens-genes enrichment, which can be viewed as iSyTE tracks in the UCSC Genome browser to aid identification of genes with lens function.
iSyTE: integrated Systems Tool for Eye gene discovery.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Properties of STAT1 and IRF1 enhancers and the influence of SNPs.
Specimen part, Cell line
View SamplesPurpose: The goals of this study are to compare transcriptome profiling (RNA-seq) resulting from the knockout of Hira in undifferentiated mouse embryonic stem cells (mESCs) and in day 15 differentiated cardiomyocytes.Methods: RNA extraction was done in duplicate from WT and Hira-null mESCs at day0 and day15 using TRIzol reagent. RNAseq was done onIllumina Nextseq500 and processed by the ICH genomics facility, reads were aligned and normalised using BOWTIE and DEseq R2 package. Gene lists were filtered using adjusted p-value = 0.05 and absolute fold change = 2. Results:We identified 1680 transcripts changed in the absence of HIRA in day 15 differentiated cardiomyocytes. GO term cardiovascular system development was the most downregulated gene set(p-value = 0.01 and FDR =0.1. Conclusion: this study analysis the role of HIRA in early cardiac mesoderm development usinf an invitro mESCs model. Overall design: mRNA profile of WT(control) and Hira-null (KO) undifferentiated mESCs and mESCs- derived cardiomyocytes at day15 were generated by deep sequencing in duplicates using Illumina Nextseq 500 platform.
HIRA directly targets the enhancers of selected cardiac transcription factors during in vitro differentiation of mouse embryonic stem cells.
Cell line, Subject
View Samples