Failure of molecular chaperones to direct the correct folding of newly synthesized proteins leads to the accumulation of misfolded proteins in cells. HSPA4 is a member of the heat shock protein 110 family (HSP110) that acts as a nucleotide exchange factor of HSP70 chaperones. We found that the expression of HSPA4 is upregulated in murine hearts subjected to pressure overload and in failing human hearts. To investigate the cardiac function of HSPA4, Hspa4 knockout (KO) mice were generated and exhibited cardiac hypertrophy and fibrosis. Hspa4 KO hearts were characterized by a significant increase in heart weight/body weight ratio, elevated expression of hypertrophic and fibrotic gene markers, and concentric hypertrophy with preserved contractile functions. Cardiac hypertrophy in Hspa4 KO hearts was associated with enhanced activation of gp130-STAT3, CaMKII, and calcineurin-NFAT signaling. Further analyses revealed a significant increase in cross sectional area of cardiomyocytes, and in expression levels of hypertrophic markers in cultured neonatal Hspa4 KO cardiomyocytes suggesting that the hypertrophy of mutant mice was a result of primary defects in cardiomyocytes. Gene expression profile in hearts of 3.5-week-old mice revealed a differentially expressed gene sets related to ion channels and stress response. Taken together, these results reveal that HSPA4 is implicated in protection against pressure overload-induced heart failure.
Targeted disruption of Hspa4 gene leads to cardiac hypertrophy and fibrosis.
Sex
View SamplesBackground: The insulin/IGF/relaxin family represents a group of structurally related but functionally diverse proteins. The family member Relaxin-2 has been evaluated in clinical trials for its efficacy in the treatment of acute heart failure. In this study, we assessed the role of Insulin-like peptide 6 (Insl6), another member of this protein family, in murine heart failure models using genetic loss-of-function and protein delivery methods. Methods and Results: Insl6-deficient (Insl6-KO) and wild-type (C57BL/6N) mice were administered angiotensin II or isoproterenol via continuous infusion with an osmotic pump or via intraperitoneal injection once a day, respectively for 2 weeks. In both models, Insl6-KO mice exhibited greater cardiac systolic dysfunction and left ventricular dilatation hypertrophy. Cardiac dysfunction in the Insl6-KO mice was associated with more extensive cardiac fibrosis and greater expression of fibrosis-associated genes. The continuous infusion of chemically synthesized INSL6 significantly attenuated left ventricular systolic dysfunction and cardiac fibrosis induced by isoproterenol infusion. Gene expression profiling suggests Lxr/ Rxr signaling is activated in the isoproterenol-challenged hearts treated with INSL6 protein. Conclusions: Endogenous Insl6 protein inhibits cardiac systolic dysfunction and cardiac fibrosis in angiotensin II- and isoproterenol-induced cardiac stress models. The administration of recombinant Insl6 protein could have utility for the treatment of heart failure and cardiac fibrosis.
Relaxin Family Member Insulin-Like Peptide 6 Ameliorates Cardiac Fibrosis and Prevents Cardiac Remodeling in Murine Heart Failure Models.
Sex, Specimen part, Treatment
View SamplesA specific set of genes involved in regulating cellular immune response, antigen presentation, and T cell activation and survival were down-regulated 7 days after LVAD placement. 6 months following LVAD placement, the expression levels of these genes were significantly increased; yet importantly, remained significantly lower than age and sex-matched samples from healthy controls. Overall design: Examination of the effect of LVAD implant on peripheral blood transcriptome. Blood was drawn before LVAD placement, 7 days post implant, and 180 days post implant. RNA sequencing was performaed on all samples.
Identification of differentially expressed transcripts and pathways in blood one week and six months following implant of left ventricular assist devices.
Specimen part, Subject, Time
View SamplesTotal RNA microarray data from Fresh-Frozen Glioblastoma tumor samples.
Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.
Specimen part, Disease stage
View SamplesPlant Homeo Domain (PHD) is a versatile chromatin reader/effector module which recognizes methylated, acetylated or unmodified histone substrates and regulates cellular gene expression programs. Although PHD domains shows selective epigenetic recognition of methylated, acetylated and unmodified histone substrates, there has been no previous report on its catalytic function regulating malignant transformation of cells. Here we report that PHD finger of UBR7 (Ubiquitin Protein Ligase E3 Component N-Recognin 7 (Putative)), in isolation or in context of full length protein, harbors E3 ubiquitin ligase activity towards monoubiquitination of histone H2B at lysine 120 . Knockdown of UBR7 in MCF10a and breast cancer cells decreased H2BK120ub both at the global levels and on specific genes. Conversely, overexpression of wild type, but not catalytic mutant, rescued H2BK120ub levels. Low UBR7 expression was associated with basal-like and triple negative breast cancers as well as showed poor expression in metastatic tumors. Consistently, UBR7 loss resulted in invasion properties, induced epithelial-to-mesenchymal transition and promoted metastasis. Conversely, ectopic expression of UBR7 reduced cell growth, invasion and tumor growth in mouse fat pad. Mechanistically, UBR7 reduced H2BK120ub gene body of cell-adhesion related genes as well as gene expression including on CDH4 gene. Importantly, rebuilding CDH4 levels rescued invasion phenotypes seen in UBR7-low cells. Collectively, our results establish that UBR7 PHD has novel H2B ubiquitin ligase activity and it suppresses tumor growth in basal-like breast cancers. Overall design: Triplicate total RNA profiles in Wild Type and UBR7-shRNA MCF10A Cell Line
Atypical plant homeodomain of UBR7 functions as an H2BK120Ub ligase and breast tumor suppressor.
Specimen part, Cell line, Subject
View SamplesRNA was isolated from siCTRL, siNSUN2 and ALYREF-RIP HeLa cells, and multiple mouse tissues using the TRIzol (Invitrogen) reagent by following the company manual. Approximately 2.5 µg of total RNA was then used for library preparation using a TruSeq™ RNA Sample Prep Kit v2 (Illumina, San Diego, CA, USA) according to the manufacturer’s protocol.The libraries were sequenced using HiSeq3000 (Illumina) or HiSeq2500 in paired-read mode, creating reads with a length of 101 or 125 bp. Sequencing chemistry v2 or v4 (Illumina) was used. Overall design: Examination of gene expressive levels in siCTRL, siNSUN2 and ALYREF-RIP HeLa cells, and multiple mouse tissues
5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m<sup>5</sup>C reader.
No sample metadata fields
View SamplesIn order to distinguish transcription changes from RNA modification and post transcription changed, nascent RNA seq via metabolic labeling of freshly synthesized RNA was carried out using 4sU labeling/biotin purification. Overall design: nascent RNA was extractred post N-MYC activation and compared with untreated cells nascent RNA to gather fold changes of pre-mRNA on gene basis.
MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation.
Treatment, Subject
View SamplesRNA was isolated from and METTL3,WTAP deficient Human HeLa cells using the TRIzol (Invitrogen) reagent by following the company manual. For all samples the RNA integrity was checked using an Agilent Bioanalyzer 2100. All samples showed a RIN (RNA integrity number) of higher than 9. Approximately 2.5 µg of total RNA was then used for library preparation using a TruSeq™ RNA Sample Prep Kit v2 (Illumina, San Diego, CA, USA) according to the manufacturer’s protocol.The libraries were sequenced using HiSeq2000 (Illumina) in single-read mode, creating reads with a length of 50 bp. Sequencing chemistry v2 (Illumina) was used and samples were multiplexed in two samples per lane. Overall design: Examination of gene expressive levels in normal and METTL3,WTAP deficient Human HeLa cells
Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase.
Specimen part, Cell line, Treatment, Subject
View Samples