Treatment of MCF7 breast cancer cells by cisplatin leads to a very specific metabolic response and an onset of cell death about 10-11 h after beginning of treatment. For more detailed understanding of the molecular processes underlying the specific metabolic response, mRNA was isolated from MCF7 cells when the specific changes, (i) induction of glycolysis and (ii) onset of cell death, were detected during online measurement in the cell biosensor system.
Real-time monitoring of cisplatin-induced cell death.
Cell line
View SamplesThe Myc proteins (N-, L- and c-Myc) are transcription factors involved in many biological functions such as regulation of cell proliferation, differentiation, metabolism and apoptosis. A large number of human cancers show enhanced expression of myc family proto-oncogenes as one of their hallmarks. These proteins contain a basic region/helix-loop-helix/leucine zipper (bHLHZip) domain that mediates DNA binding and heterodimerization with its partner Max (Myc/Max heterodimer). Among Myc proteins, c-Myc is the most widely expressed and relevant in primary B lymphocytes. Some reports have implied that c-Myc can perform some functions without Max in different cell contexts. However, the functional interplay in vivo between c-Myc and Max during B lymphocyte differentiation is not well-known. Here we show that c-Myc requires Max. However, key biological processes such as cell differentiation and DNA replication can initially progress without c-Myc/Max heterodimer in primary B lymphocytes. We found that B lymphocytes lacking Myc, Max or both showed upregulation of signalling pathways associated with the B cell receptor. Our data suggest that c-Myc/Max heterodimers are not essential for the initiation of certain biological processes in B lymphocytes. Rather, c-Myc/Max are necessary for fine-tuning the initial response in these cells after activation. Overall design: B cell mRNA profiles of 8-week old control (HET) Myc deficient (MycKO), Max deficient (MaxKO) and double deficient (DKO) mice were generated by deep sequencing, in duplicate, using a HiSeq2500 (Illumina.
Functional interplay between c-Myc and Max in B lymphocyte differentiation.
Age, Specimen part, Subject
View SamplesHeritable differences in gene expression between individuals are an important source of phenotypic variation. The question of how closely the effects of genetic variation on protein levels mirror those on mRNA levels remains open. Here, we addressed this question by using ribosomal footprinting to examine how genetic differences between two strains of the yeast S. cerevisiae affect translation. Strain differences in translation were observed for hundreds of genes, more than half as many as showed genetic differences in mRNA levels. Similarly, allele specific measurements in the diploid hybrid between the two strains found roughly half as many cis-acting effects on translation as were observed for mRNA levels. In both the parents and the hybrid, strong effects on translation were rare, such that the direction of an mRNA difference was typically reflected in a concordant footprint difference. The relative importance of cis and trans acting variation on footprint levels was similar to that for mRNA levels. Across all expressed genes, there was a tendency for translation to more often reinforce than buffer mRNA differences, resulting in footprint differences with greater magnitudes than the mRNA differences. Finally, we catalogued instances of premature translation termination in the two yeast strains. Overall, genetic variation clearly influences translation, but primarily does so by subtly modulating differences in mRNA levels. Translation does not appear to create strong discrepancies between genetic influences on mRNA and protein levels. Overall design: Ribsosomal footprinting and RNASeq in the two yeast strains BY and RM as well as their diploid hybrid. We generated one library each for the BY and RM parents, and two libraries (biological replicates) for the hybrid data.
Genetic influences on translation in yeast.
Cell line, Subject
View SamplesEmbryonic chicken telencephalon nuclei were isolated for RNAseq to identify transcripts differentially expressed across different brain regions.
Neocortical Association Cell Types in the Forebrain of Birds and Alligators.
Sex, Specimen part
View SamplesPlant damage promotes the interaction of lipoxygenases (LOX) with fatty acids yielding 9-hydroperoxides, 13-hydroperoxides and complex arrays of oxylipins. The action of 13-LOX on linolenic acid enables production of 12-oxo-phytodienoic acid (12-OPDA) and its downstream products, termed jasmonates. As signals, jasmonates have related yet distinct roles in the regulation of plant resistance against insect and pathogen attack. A similar pathway involving 9-LOX activity on linolenic and linoleic acid leads to the 12-OPDA positional isomer, 10-oxo-11-phytodienoic acid (10-OPDA) and 10-oxo-11-phytoenoic acid (10-OPEA), respectively; however, physiological roles for 9-LOX cyclopentenones have remained unclear. In developing maize (Zea mays) leaves, southern leaf blight (Cochliobolus heterostrophus) infection results in dying necrotic tissue and the localized accumulation of 10-OPEA, 10-OPDA and a series of related 14- and 12-carbon metabolites, collectively termed death acids. 10-OPEA accumulation becomes wound-inducible within fungal-infected tissues and at physiologically relevant concentrations acts as a phytoalexin by suppressing the growth of fungi and herbivores including Aspergillus flavus, Fusarium verticillioides, and Helicoverpa zea. Unlike previously established maize phytoalexins, 10-OPEA and 10-OPDA display significant phytotoxicity. Both 12-OPDA and 10-OPEA promote the transcription of defense genes encoding glutathione S-transferases, cytochrome P450s, and pathogenesis-related proteins. In contrast, 10-OPEA only weakly promotes the accumulation of multiple protease inhibitor transcripts. Consistent with a role in dying tissue, 10-OPEA application promotes cysteine protease activation and cell death which is inhibited by overexpression of the cysteine protease inhibitor maize cystatin-9. Functions for 10-OPEA and associated death acids are consistent with specialized roles in local defense reactions.
Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.
Sex, Specimen part, Treatment
View SamplesMouse models of Fetal Alcohol Spectrum Disorder can be used to assess molecular changes underlying the disorder. Neonatal ethanol exposure in mice can be used to model third trimester ethanol exposure in humans.
Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.
Sex, Specimen part, Treatment
View SamplesPlasmacytoid dendritic cells (pDCs) are an immune subset devoted to the production of high amounts of type 1 interferons in response to viral infections. While conventional dendritic cells (cDCs) originate mostly from a common dendritic cell progenitor (CDP), pDCs have been shown to develop from both CDPs and common lymphoid progenitors (CLP). Here we found that pDCs developed predominantly from IL7R+ lymphoid progenitor cells. Expression of SiglecH and Ly6D defined pDC lineage commitment along the lymphoid branch. Transcriptional characterization of SiglecH+Ly6D+ precursors indicated that pDC development requires high expression of the transcription factor IRF8, while pDC identity relies on TCF4. RNA sequencing of IL7R+ lymphoid and CDP-derived pDCs mirrored the heterogeneity of mature pDCs observed by single-cell analysis. Both mature pDC subsets are able to secrete type 1 interferons, but only myeloid-derived pDCs share with cDCs their ability to process and present antigen. Overall design: Bulk RNA Seq was performed from sort purified DN, SP and DP lymphoid progenitors and BM pDCs of 4 individual mice
Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells.
Specimen part, Cell line, Subject
View SamplesDetermining which genes are expressed in mechanoreceptor-rich tissue (pedicel) compared mechanoreceptor-poor tissue (capitellum) and a neuronal subtraction control (thoracic ganglion) in Drosophila melanogaster
A doublecortin containing microtubule-associated protein is implicated in mechanotransduction in Drosophila sensory cilia.
Sex, Age, Specimen part
View SamplesPlasmacytoid dendritic cells (pDCs) are an immune subset devoted to the production of high amounts of type 1 interferons in response to viral infections. While conventional dendritic cells (cDCs) originate mostly from a common dendritic cell progenitor (CDP), pDCs have been shown to develop from both CDPs and common lymphoid progenitors (CLP). Here we found that pDCs developed predominantly from IL7R+ lymphoid progenitor cells. Expression of SiglecH and Ly6D defined pDC lineage commitment along the lymphoid branch. Transcriptional characterization of SiglecH+Ly6D+ precursors indicated that pDC development requires high expression of the transcription factor IRF8, while pDC identity relies on TCF4. RNA sequencing of IL7R+ lymphoid and CDP-derived pDCs mirrored the heterogeneity of mature pDCs observed by single-cell analysis. Both mature pDC subsets are able to secrete type 1 interferons, but only myeloid-derived pDCs share with cDCs their ability to process and present antigen. Overall design: BM and splenic pDCs were sorted from 3 mice and 3000 cells/sample were used for single cell RNA Seq (10x genomics)
Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells.
Specimen part, Cell line, Subject
View Samples