In this data, we examined Transcriptome detection and expression in 8 samples of Retinoblastoma. We found a central core shared by all samples .
Discovery of a transcriptomic core of genes shared in 8 primary retinoblastoma with a novel detection score analysis.
Disease
View SamplesIn order to understand how Pseudomonas aeruginosa responds to low oxygen we grew strain PAO1 with 3 different oxygen concentrations: 2%, 0.4% and 0% supplemented with nitrate as an electron acceptor. Gene expression under these conditions was compared to that of cells grown with 20% oxygen.
Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration.
No sample metadata fields
View SamplesThe dentate gyrus of the hippocampus continues generating new neurons throughout life. These nerve cells originate from radial astrocytes within the subgranular zone (SGZ). We find that Sox1, a member of the SoxB1 family of transcription factors, is expressed in a subset of radial astrocytes. Lineage tracing using Sox1 driven reporter mice shows that the Sox1-expressing cells represent an activated neural stem/progenitor population.
Sox1 marks an activated neural stem/progenitor cell in the hippocampus.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Lhx5 controls mamillary differentiation in the developing hypothalamus of the mouse.
Specimen part, Treatment
View SamplesLhx5 mutant mouse embryos show loss of a neuronal nucleus of the brain called the mamillary body and essential for the formation of memories. We wanted to identify the genes that are responsible for the normal development of the mammillary body.
Lhx5 controls mamillary differentiation in the developing hypothalamus of the mouse.
Specimen part
View SamplesExercise enhances cognitive function and slows progressive neurodegenerative disease. While exercise promotes neurogenesis, oligodendrogenesis and adaptive myelination are also significant contributors to brain repair and brain health. Nonetheless, the molecular details underlying these effects remain poorly understood. Conditional ablation of the Snf2h gene (Snf2h cKO) impairs cerebellar development producing mice with poor motor function, progressive ataxia and death between postnatal day 25 to 45. Here we show that voluntary running induced an endogenous brain repair mechanism that resulted in a striking increase in hindbrain myelination and the long-term survival of Snf2h cKO mice. Further experiments identified the VGF growth factor as a major driver underlying this effect. VGF neuropeptides could promote oligodendrogenesis in vitro, while Snf2h cKO mice treated with full-length VGF-encoding adenoviruses obliterated the requirement of exercise for survival. Together, these results suggest that VGF delivery could represent a therapeutic strategy for cerebellar ataxia and other pathologies of the central nervous system. Overall design: 4 samples per genotype in biological replicates (8 paired-end libraries)
Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice.
Sex, Specimen part, Cell line, Subject
View SamplesCellular senescence is a program of irreversible cell cycle arrest that normal cells undergo in response to progressive shortening of telomeres, changes in telomeric structure, oncogene activation or oxidative stress. The underlying signalling pathways, potentially of major clinicopathological relevance, are unknown. A major stumbling block to studying senescence has been the absence of suitable model systems because of the asynchrony of this process in heterogeneous cell populations. To simplify this process many investigators study oncogene-induced senescence due to expression of activated oncogenes where senescence occurs prematurely without telomere attrition and can be induced acutely in a variety of cell types. We have taken a different approach by making use of the finding that reconstitution of telomerase activity by introduction of the catalytic subunit of human telomerase alone is incapable of immortalising all human somatic cells, but inactivation of the p16-pRB and p53-p21 pathways are required in addition. The ability of SV40 large T antigen to inactivate the p16-pRB and p53-p21 pathways has enabled us to use a thermolabile mutant of LT antigen, in conjunction with hTERT, to develop conditionally immortalised human (HMF3A) fibroblasts that are immortal but undergo an irreversible growth arrest when the thermolabile LT antigen is inactivated leading to activation of pRB and p53. When these cells cease dividing, senescence-associated- b-galactosidase activity is induced and the growth-arrested cells have morphological features and express genes in common with senescent cells. Since these cells growth arrest in a synchronous manner they are an excellent starting point for dissecting the pathways that underlie cellular senescence and act downstream of p16-pRB and p53-p21 pathways. We have combined genome-wide expression profiling with genetic complementation to undertake identification of genes that are differentially expressed when these conditionally immortalised human fibroblasts undergo senescence upon activation of the p16-pRB and p53-p21 tumour suppressor pathways.
Activation of nuclear factor-kappa B signalling promotes cellular senescence.
Cell line, Treatment
View SamplesThe goal of this experiment is to analyze global gene expression profiles during the cell cycle after acute depletion of E2F7. Overall design: RNA was isolated at three time-points following exit from cell cycle arrest, which represent G1/S transition (0h), S phase (3h) and G2/M boundary (12h) of the cell cycle in cells transfected with siRNAs specific for E2F7 (siE2F7) or with non-target control siRNAs (siNT)
An E2F7-dependent transcriptional program modulates DNA damage repair and genomic stability.
Cell line, Subject
View SamplesPancreatic islet transplantation was performed in the subcutaneous space of diabetic nude mice. In order to promote long survival and function of transplanted islets a plasma-based scaffold was developed in combination with fibroblasts as graft-supporting accesory cells. Gene expression analysis was carried out to evaluate expression differences due to the presence of fibroblast which could explain the long-term glycemic control observed under these circumstances.
Fibroblasts accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation.
Disease, Time
View SamplesPlants regulate their time to flowering by gathering information from the environment. Photoperiod and temperature are among the most important environmental variables. Suboptimal, but not near-freezing, temperatures regulate flowering through the thermosensory pathway, which overlaps with the autonomous pathway. Here we show that ambient temperature regulates flowering by two genetically distinguishable pathways, one that requires TFL1 and another that requires ELF3. The delay in flowering time observed at lower temperatures was partially suppressed in single elf3 and tfl1 mutants, whereas double elf3 tfl1 mutants were insensitive to temperature. tfl1 mutations abolished the temperature response in cryptochrome mutants that are deficient in photoperiod perception, but not in phyB mutants that have a constitutive photoperiodic response. Contrary to tfl1, elf3 mutations were able to suppress the temperature response in phyB mutants, but not in cryptochrome mutants. The gene expression profile revealed that the tfl1 and elf3 effects are due to the activation of different sets of genes and identified CCA1 and SOC1/AGL20 as being important cross talk points. Finally, genome-wide gene expression analysis strongly suggests a general and complementary role for ELF3 and TFL1 in temperature signalling.
A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature.
No sample metadata fields
View Samples