The relevance of DNA-dependent poly-ADP ribose production for neuronal differentiation of adult stem- and progenitor cells from the SVZ was studied. To identify genes whose up- or downregulation during neuronal differentiation requires the activity of poly-ADP-Ribosylase (PARP) 1 or 2, SVZ-derived adult neurosphere cultures were differentiated in the presence or absence of Olaparib.
MEIS homeodomain proteins facilitate PARP1/ARTD1-mediated eviction of histone H1.
Treatment
View SamplesTo obtain a separation of the epidermal and dermal compartments in order to examine compartment specific biological mechanisms in the skin we incubated 4 mm human skin punch biopsies in ammonium thiocyanate (NH4SCN). We wanted to test 1) the histological quality of the dermo-epidermal separation obtained by different incubation times 2) the amount and quality of extractable epidermal RNA, and 3) its impact on sample RNA expression profiles assessed by large-scale gene expression microarray analysis in both normal and inflamed skin. At 30 minutes incubation, the split between dermis and epidermis was not always histologically well-defined (i.e. occurred partly intra-epidermally) but varied between subjects. Consequently, curettage along the dermal surface of the biopsy was added to the procedure. This modified method resulted in an almost perfect separation of the epidermal and dermal compartments and satisfactory amounts of high-quality RNA were obtained. Hybridization to Affymetrix HG_U133A 2.0 GeneChips showed that ammonium thiocyanate incubation had a minute effect on gene expression resulting in only one significantly downregulated gene (cystatin E/M). We conclude that epidermis can be reproducibly and almost completely separated from the dermis of 4 mm skin biopsies by 30 min incubation in 3.8% ammonium thiocyanate combined with curettage of the dermal surface, producing high-quality RNA suitable for transcriptional analysis. Our refined method of dermo-epidermal separation will undoubtedly prove valuable in the many different settings, where the epidermal and dermal compartments need to be evaluated separately.
Extraction of high-quality epidermal RNA after ammonium thiocyanate-induced dermo-epidermal separation of 4 mm human skin biopsies.
Specimen part, Subject
View SamplesSequencing of 5' ends of RNA molecules from control and exosome-depleted HeLa-S3 cells. Overall design: CAGE library construction from RNA extracted from control and exosome-depleted cells.
Nuclear stability and transcriptional directionality separate functionally distinct RNA species.
No sample metadata fields
View SamplesIn order to gain insight into relative stability of transcripts in plants that lacked m6A, we performed global mapping of uncapped and cleaved transcripts Overall design: 2 replicates of GMUCT in Arabidopsis thaliana ecotype Col-0 ABI3:MTA (mta) plants. genome-wide mapping of uncapped and cleaved transcripts (GMUCT)
N<sup>6</sup>-Methyladenosine Inhibits Local Ribonucleolytic Cleavage to Stabilize mRNAs in Arabidopsis.
Specimen part, Subject
View SamplesClassical regeneration experiments in insects have demonstrated an important role for imaginal tissues (also called discs, the larval tissues that give rise to the adult appendages) in coupling tissue growth, maturation and patterning during development We used the rotund-Gal4 driver (Rn>) for disc-targeted silencing of the avalanche gene (avl; Rn>avl-RNAi), encoding a syntaxin that functions in the early endocytic machinery (H. Lu, D. Bilder, Nat Cell Biol 7, 1232; Dec, 2005). Rn>avl-RNAi discs reach near to normal size after 5 days of development, and then undergo unrestricted neoplastic growth. We were interested in identifying genes showing differential expression profiles in control and in neoplastic growth. We identified dilp8 as one of the most differentially expressed gene in control and Rn>avl-RNAi discs.
Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing.
Specimen part
View SamplesWe used microarrays to assess differences in gene expression associated with single nucleotide polymorphisms occurred in three genes, PMA1, MDS3 and MKT1, as compared to a reference strain devoid of any mutations (Progenitor strain).
Cellular effects and epistasis among three determinants of adaptation in experimental populations of Saccharomyces cerevisiae.
No sample metadata fields
View SamplesRNA-seq with male and female juvenile and adult spinal cords Overall design: RNA was isolated from 4 week and 8 week spinal cords for sequencing
Age and Sex-Related Changes to Gene Expression in the Mouse Spinal Cord.
Sex, Age, Specimen part, Cell line, Subject
View SamplesThe purpose of this experiment was to identify oestrogen regulated genes in human primary cell cultures of neuronal and glial cells modelling the developing human nervous system. We were especially interested in genes involved in proliferation, differentiation and migration of neuronal cells and genes involved in or linked to neurodegenerative diseases. We have therefore assessed gene expression changes, using Affymetrix GeneChips (HG-U133A), of oestrogen treated human neuronal/ glial cell cultures. We continued with 14 selected genes and confirmed the gene expression changes, by relative quantitative real time PCR, of 6 genes (p< 0.05) important in neuronal development, three of which also are suggested to have links to neurodegenerative diseases.
Transcriptional analysis of estrogen effects in human embryonic neurons and glial cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers.
Specimen part, Cell line
View SamplesCyclins and cyclin-dependent kinases (CDKs) are hyperactivated in nearly all human tumor types. To identify new approaches for interfering with cyclins/CDKs, we systematically searched for microRNAs (miRNAs) regulating these proteins. We uncovered a group of miRNAs that target nearly all cyclins and CDKs, and demonstrated that these miRNAs are very effective in shutting off cancer cell expansion. By profiling the response of over 120 human cancer cell lines representing 12 tumor types to these cell-cycle-targeting miRNAs, we identified miRNAs particularly effective against triple-negative breast cancers and KRAS-mutated cancers. We also derived expression-based algorithm that predicts response of primary tumors to cell-cycle-targeting miRNAs. Using systemic administration of nanoparticle-formulated miRNAs, we halted tumor progression in seven mouse xenograft models, including three highly aggressive and treatment-refractory patient-derived tumors, without affecting normal tissues. Our results highlight the utility of using cell-cycle-targeting miRNAs for treatment of refractory cancer types. Overall design: RNA-seq for SW900 cells transfected with 25 nM of miR-193a-3p mimic or 25 nM of negative miRNA control (Negative control #2, Ambion).
Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers.
No sample metadata fields
View Samples