Drought is an important environmental factor affecting plant growth and biomass production. Despite this importance little is known on the molecular mechanisms regulating plant growth under water limiting conditions. The main goal of this work was to investigate, using a combination of growth and molecular profiling techniques, how stress arrests CELl proliferation in Arabidopsis thaliana leaves upon osmotic stress imposition.
Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest.
Specimen part
View SamplesDrought is an important environmental factor affecting plant growth and biomass production. Despite this importance, little is known on the molecular mechanisms regulating plant growth under water limiting conditions. The main goal of this work was to investigate, using a combination of growth and molecular profiling techniques, how Arabidopsis thaliana leaves adapt their growth to prolonged mild osmotic stress. Fully proliferating, expanding and mature leaves were harvested from plants grown on plates without (control) or with 25mM mannitol (osmotic stress) and compared to seedlings at stage 1.03.
Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress.
Specimen part
View SamplesThe transcriptional coactivator ANGUSTIFOLIA 3 (AN3) stimulates cell proliferation during Arabidopsis leaf development, but the molecular mechanism is largely unknown. We show here that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR 2 (CRF2), CONSTANS-LIKE 5 (COL5), HECATE 1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR 4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED (SYD). Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoter of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.
ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development.
Specimen part, Time
View SamplesTo compare up-regulation of genes following CpG activation, we performed microarray analysis of activated macrophages from B6 and F1(B6xMOLF) mouse strains. Cells were activated for 0, 2 and 4 hrs with 200nM of type B CpG. Levels of mRNA for many genes differened dramatically between the strains
Mannose receptor 1 mediates cellular uptake and endosomal delivery of CpG-motif containing oligodeoxynucleotides.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesGene expression levels are determined by the balance between rates of mRNA transcription and decay, and genetic variation in either of these processes can result in heritable differences in transcript abundance. Although the genetics of gene expression has been the subject of intense interest, the contribution of heritable variation in mRNA decay rates to gene expression variation has received far less attention. To this end, we developed a novel statistical framework and measured allele-specific differences in mRNA decay rates in a diploid yeast hybrid created by mating two genetically diverse parental strains. In total, we estimate that 31% of genes exhibit allelic differences in mRNA decay rate, of which 350 can be identified at a false discovery rate of 10%. Genes with significant allele-specific differences in mRNA decay rate have higher levels of polymorphism compared to other genes, with all gene regions contributing to allelic differences in mRNA decay rate. Strikingly, we find widespread evidence for compensatory evolution, such that variants influencing transcriptional initiation and decay having opposite effects, suggesting steady-state gene expression levels are subject to pervasive stabilizing selection. Our results demonstrate that heritable differences in mRNA decay rates are widespread, and are an important target for natural selection to maintain or fine-tune steady-state gene expression levels. Overall design: We measured rates of allele-specific mRNA decay (ASD) in a diploid yeast produced by mating two genetically diverse haploid Saccharomyces cerevisiae strains: the laboratory strain BY4716 (BY), which is isogenic to the reference sequence strain S288C, and the wild Californian vineyard strain RM11-1a (RM). Briefly, we introduced rpb1-1, a temperature sensitive mutation in an RNA polymerase II subunit, to each of the haploid yeast strains, mated the strains, and grew the resulting hybrid diploid to mid-log phase at 24 °C, before rapidly shifting the culture to 37 °C to inhibit transcription. RNA-seq was performed on culture samples taken at 0, 6, 12, 18, 24, and 42 minutes subsequent to the temperature shift. To identify ASD, we used transcribed polymorphisms to distinguish between parental transcripts, and compared the relative levels of transcript abundance over the time course. Note, this experimental design internally controls for trans-acting regulatory variation as well as environmental factors. Under the null hypothesis of no ASD, the proportion of reads from the BY transcript (p_BY = N_BY / (N_BY + N_RM)) observed over the time course remains unchanged. However, genes with ASD will exhibit an increasing or decreasing proportion of BY reads as a function of time. In total, we measured ASD from three independent biological replicates.
Heritable variation of mRNA decay rates in yeast.
Disease, Cell line, Subject
View Samples