Microglia-like cells and neural cells were generated from several hES and hIPS lines. As subset was characterized by RNA seq and compared to expression profiles of published primary and induced samples. ABSTRACT: Microglia, the only lifelong resident immune cells of the central nervous system (CNS), are highly specialized macrophages which have been recognized to play a crucial role in neurodegenerative diseases such as Alzheimer's, Parkinson's and Adrenoleukodystrophy (ALD). However, in contrast to other cell types of the human CNS, bona fide microglia have not yet been derived from cultured human pluripotent stem cells. Here we establish a robust and efficient protocol for the rapid production of microglia-like cells from human embryonic stem (ES) and induced pluripotent stem (iPS) cells that uses defined serum-free culture conditions. These in vitro pluripotent stem cell-derived microglia-like cells (termed pMGLs) faithfully recapitulate the expected ontogeny and characteristics of their in vivo counterparts and resemble primary fetal human and mouse microglia. We generated these cells from multiple disease-specific cell lines, and find that pMGLs derived from MeCP2 mutant hES cells are smaller than their isogenic controls. We further describe a culture platform to study integration and live behavior of pMGLs in organotypic 3D-cultures. This modular differentiation system allows the study of microglia in highly defined conditions, as they mature in response to developmentally relevant cues, and provides a framework to study the long-term interaction of microglia residing in a tissue-like environment. Overall design: Individual donors/genetic backgrounds. Dataset inlcudes 4 differentiated neural progenitor biological replicates (NPC1-4), 2 primary fetal microglia samples as reference, 5 induced microglia samples grown in basal medium (pMGL1-5), 3 induced microglia samples grown in neural conditioned medium (pMGL1-3+NCM)
Efficient derivation of microglia-like cells from human pluripotent stem cells.
Subject
View SamplesP. falciparum NF54 proliferates under micro-aerophilic conditions in an environment of 3% O2, 4% CO2, 93% N2. This strain was gradually adapted to proliferate under standard tissue culture conditions of 5% CO2/95% air (~19% O2) to generate P. falciparum HOX. We compared global gene expression profiles of the two strains to identify differences, if any.
Model system to define pharmacokinetic requirements for antimalarial drug efficacy.
No sample metadata fields
View SamplesBACKGROUND: Cadmium is implicated in prostate carcinogenesis, but its oncogenic action remains unclear.
Transcriptome analyses in normal prostate epithelial cells exposed to low-dose cadmium: oncogenic and immunomodulations involving the action of tumor necrosis factor.
Sex
View SamplesPiriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of many plant species including Arabidopsis thaliana. The symbiotic interaction promotes plant per-formance, growth and resistance/tolerance against abiotic and biotic stress. We demonstrate that exudated compounds from the fungus activate stress and defense responses in the Arabidopsis roots and shoots before the two partners are in physical contact. They induce stomata closure, stimulate reactive oxygen species (ROS) production, stress-related phytohormone accumulation and activate defense and stress genes in the roots and/or shoots. Once a physical contact is established, the stomata re-open, ROS and phytohormone levels decline, and the gene expression pattern indicates a shift from defense to mutualistic interaction.
The interaction of Arabidopsis with Piriformospora indica shifts from initial transient stress induced by fungus-released chemical mediators to a mutualistic interaction after physical contact of the two symbionts.
Age, Specimen part
View SamplesExpression analyses comparing c-Fos expressing keratinocytes vs non-expressing controls.
Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos.
Specimen part, Treatment, Time
View Samplesc-Fos, a member of the stress-activated Activator Protein 1 (AP-1) transcription factor family, is expressed in human hepatocellular cancer (HCC). Using genetically engineered mouse models (GEMMs) we show that hepatocyte-specific expression of c-Fos leads to a proliferative, de-differentiated phenotype, whereas hepatocyte-specific deletion of c-Fos protects against diethylnitrosamine (DEN)-induced liver cancer. Furthermore, c-Fos-expressing livers resemble human HCCs based on expression profiles. In the present RNA seq, we intend to analyze the transcriptomic profile of livers at 2 and 4 mo hepatocyte-specific c-Fos expression compared to the corresponding age-matched control mice. Moreover, we analyzed livers of mice with hepatocyte-specific deletion c-Fos at 48h after DEN treatment compared to identically treated control mice. Overall design: The general idea was to analyze the transcriptomic profile of hepatocyte-specific c-Fos over-expressing livers at 2 and 4 mo expression. Hereby, a hepatocyte-specific doxycycline (Dox)-switchable mouse model was (LAP-tTA; col1a1:Tet-O-fosFlag) was generated and c-Fos expression was induced at the age of 3 weeks by removal of doxycycline. Each sample LaptTA-fos-MUT represents an individual hepatocyte-specific c-fos expressing mouse at the indicated time-point and the corresponding identically treated control mouse LaptTA-fos-CO. Moreover, the transcriptomic profile of livers with hepatocyte-specific deletion of c-Fos at 48h after diethylnitrosamine (DEN)-induced liver cancer initiation was analyzed. For hepatocyte-specific knock-out of c-Fos, mice with conditional alleles of c-fos and the Alfp-Cre transgene were used. Control mice only carried the Alfp-Cre transgene. At the age of 8 weeks these mice were injected with 100mg/kg DEN. Each sample AlfpCre-fos-MUT_DEN represents an individual hepatocyte-specific c-fos knock-out mouse 48h after DEN and the identically treated control mouse AlfpCre-fos-CO-Cre+_DEN.
Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation.
Specimen part, Treatment, Subject
View SamplesThe mitogen-activated protein kinase (MAPK) p38alpha controls inflammatory responses and cell proliferation. Using mice carrying conditional p38alpha alleles, we investigated its function in postnatal development and tumorigenesis. When p38alpha is specifically deleted in the mouse embryo, fetuses develop to term but die shortly after birth, likely due to lung dysfunction. Fetal hematopoietic cells and embryonic fibroblasts deficient in p38alpha display increased proliferation, resulting from sustained activation of the c-Jun N-terminal kinase (JNK)/c-Jun pathway. Importantly, in chemical-induced liver cancer development, mice with liver-specific deletion of p38alpha show enhanced hepatocyte proliferation and tumor development that also correlates with JNK/c-Jun upregulation. Furthermore, increased proliferation of p38alpha-deficient hepatocytes and tumor cells is suppressed by inactivation of JNK or c-Jun. These results reveal a novel mechanism whereby p38alpha negatively regulates cell proliferation through antagonizing the JNK/c-Jun pathway in multiple cell types and in liver cancer development.
p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway.
No sample metadata fields
View SamplesBackground & Aims: Perturbations in pancreatic ductal bicarbonate secretion often result in chronic pancreatitis. Although the physiological mechanism of ductal secretion is known, its transcriptional control is not well characterized. Here, we investigate the role of the transcription factor Hematopoietically-expressed homeobox protein (Hhex) in pancreatic secretion and pancreatitis. Methods: We derived mice with pancreas-specific, Cre-mediated Hhex gene ablation to determine the requirement of Hhex in the pancreatic duct in early life and in adult stages. Histological and immunostaining analyses were used to detect the presence of pathology. Pancreatic primary ductal cells (PDCs) were isolated to discover differentially expressed transcripts upon acute Hhex ablation. Results: Hhex protein was detected throughout the embryonic and adult ductal trees. Ablation of Hhex in pancreatic progenitors resulted in postnatal ductal ectasia associated with acinar-to-ductal metaplasia, a progressive phenotype that ultimately resulted in chronic pancreatitis. Hhex ablation in adult mice, however, did not cause any detectable pathology. Ductal ectasia did not result from perturbations in primary cilia, but was consistent with the effects of primary ductal hypertension. RNA-seq analysis of Hhex-ablated PDCs indicated the G-protein coupled receptor Natriuretic peptide receptor 3, implicated in paracrine signaling, was upregulated 4.70-fold. Conclusions: Although Hhex is dispensable for adult pancreatic function, ablation of Hhex in pancreatic progenitors results in profound pancreatitis that is consistent with primary ductal hypertension. Our data highlight the critical role of paracrine signaling in maintaining ductal homeostasis, especially in early life, and support ductal hypersecretion as a novel etiology of pediatric chronic pancreatitis. Overall design: Pancreatic primary ductal cells (PDCs) were isolated from uninduced adult HhexL/L;Sox9CreERT2 (n=2) and littermate control HhexL/L (n=2) mice. PDCs were treated with 500nM 4-hydroxytamoxifen in vitro for 4 days, and then RNA was collected for transcriptome analysis.
Spontaneous Pancreatitis Caused by Tissue-Specific Gene Ablation of <i>Hhex</i> in Mice.
No sample metadata fields
View SamplesThe objectives of this investigation were to examine changes in the host transcriptional profiles during a polymicrobial periodontal pathogens Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia infection using a murine calvarial model of inflammation and bone resorption. P. gingivalis FDC 381, T. denticola ATCC 35404, and T. forsythia ATCC 43037 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and analyzed for transcript profiles using Murine GeneChip MG-MOE430A Affymetrix arrays to provide a molecular profile of the events that occur following infection of these tissues.
Polymicrobial periodontal pathogen transcriptomes in calvarial bone and soft tissue.
Age, Specimen part
View SamplesThe objectives of this investigation were to examine changes in the host transcriptional profiles during a Tannerella forsythia infection using a murine calvarial model of inflammation and bone resorption. T. forsythia ATCC 43037 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and analyzed for transcript profiles using Murine GeneChip MG-MOE430A Affymetrix arrays to provide a molecular profile of the events that occur following infection of these tissues.
Tannerella forsythia infection-induced calvarial bone and soft tissue transcriptional profiles.
Age, Specimen part
View Samples