We performed a microarray screening of adult rat retinas to identify genes that could show and up- or down-regulation due to exposure to light.
A component of retinal light adaptation mediated by the thyroid hormone cascade.
Specimen part, Treatment
View SamplesThe cortical area map is initially patterned by transcription factor (TF) gradients in the neocortical primordium, which define a protomap in the embryonic ventricular zone (VZ). However, mechanisms that propagate regional identity from VZ progenitors to cortical plate (CP) neurons are unknown. Here we show that the VZ, subventricular zone (SVZ), and CP contain distinct molecular maps of regional identity, reflecting different gene expression gradients in radial glia progenitors, intermediate progenitors, and projection neurons, respectively. The intermediate map in SVZ is modulated by Eomes (also known as Tbr2), a T-box TF. Eomes inactivation caused rostrocaudal shifts in SVZ and CP gene expression, with loss of corticospinal axons and gain of corticotectal projections. These findings suggest that cortical areas and connections are shaped by sequential maps of regional identity, propagated by the Pax6 Eomes Tbr1 TF cascade. In humans, PAX6, EOMES, and TBR1 have been linked to intellectual disability and autism.
The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map.
Specimen part
View SamplesAreas and layers of the cerebral cortex are specified by genetic programs that are initiated in progenitor cells and then, implemented in postmitotic neurons. Here, we report that Tbr1, a transcription factor expressed in postmitotic projection neurons, exerts positive and negative control over both regional (areal) and laminar identity. Tbr1 null mice exhibited profound defects of frontal cortex and layer 6 differentiation, as indicated by down-regulation of gene-expression markers such as Bcl6 and Cdh9. Conversely, genes that implement caudal cortex and layer 5 identity, such as Bhlhb5 and Fezf2, were up-regulated in Tbr1 mutants. Tbr1 implements frontal identity in part by direct promoter binding and activation of Auts2, a frontal cortex gene implicated in autism. Tbr1 regulates laminar identity in part by downstream activation or maintenance of Sox5, an important transcription factor controlling neuronal migration and corticofugal axon projections. Similar to Sox5 mutants, Tbr1 mutants exhibit ectopic axon projections to the hypothalamus and cerebral peduncle. Together, our findings show that Tbr1 coordinately regulates regional and laminar identity of postmitotic cortical neurons.
Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex.
Specimen part
View SamplesLineage commitment during Embryonic Stem Cells (ESCs) differentiation is controlled not only by a gamut of transcription factors but also by epigenetic events, mainly histone deacetylation and promoter DNA methylation. Moreover, the DNA demethylation agent 5-Aza-2-deoxycytidine (AzadC) has been widely described in the literature as an effective chemical stimulus used to promote cardiomyogenic differentiation in various stem cell types; however, its toxicity and instability complicate its use. Thus, the purpose of this study was to examine the effects of zebularine, a stable and non-toxic DNA cytosine methylation inhibitor, on ESCs differentiation. Herein are the Affymetrix Expression data obtained from RNA of murine ESCs treated with zebularine.
Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment.
Specimen part, Cell line, Treatment
View SamplesEpstein-Barr Virus (EBV) Latent Membrane Protein 1 (LMP1) transforms rodent fibroblasts and is expressed in most EBV-associated malignancies. LMP1 Transformation Effector Site 2 (TES2)/C-Terminal Activation Region 2 (CTAR2) activates NF-kappaB, p38, JNK, ERK and IRF7 pathways. We have investigated LMP1 TES2 genome-wide RNA effects at 4 time points after LMP1 TES2 expression in HEK 293 cells. Using a False Discovery Rate (FDR) of < 0.001 after correction for multiple hypotheses, LMP1 TES2 caused > 2-fold changes in 1916 mRNAs; 1479 RNAs were up-regulated and 437 down-regulated. In contrast to TNFalpha stimulation, which transiently up-regulates many target genes, LMP1 TES2 maintained most RNA effects through the time course, despite robust and sustained induction of negative feedback regulators, such as IkappaBalpha and A20. LMP1 TES2 regulated RNAs encode many NF-kappaB signaling proteins and secondary interacting proteins. Consequently, many LMP1 TES2-regulated RNAs encode proteins that form an extensive interactome. Gene Set Enrichment Analyses found LMP1 TES2 up-regulated genes to be significantly enriched for Pathways in Cancer, B-and T-cell receptor signaling, and Toll-like receptor signaling. Surprisingly, LMP1 TES2 and IkappaBalpha super-repressor co-expression decreased LMP1 TES2 RNA effects to only 5 RNAs with FDR<0.001 and >2 fold change. Thus, canonical NF-kappaB activation is critical for almost all LMP1 TES2 RNA effects in HEK-293 cells and a more significant therapeutic target than previously appreciated.
Canonical NF-kappaB activation is essential for Epstein-Barr virus latent membrane protein 1 TES2/CTAR2 gene regulation.
Specimen part
View SamplesDysfunction in type I interferon (IFN) signaling occurs in patients with stage II or more advanced cancer. After screening the effects of a panel of 12 melanoma cell lines on PBMCs of healthy volunteers of IFNalpha signal pathway, two groups of melanoma cell lines could be identified one with stronger suppression (low pSTAT-1 group) than the other (high pSTAT-1 group). Comparative global gene expression between two groups identified 6771 differential expression genes. This gene list indicated down regulation of IFNalpha signal in immune suppressive melanoma cells. To evaluate this gene list for predictive power on IFNalpha signal modulatory function, we analyzed gene expression 41 independent melanoma cell lines and heat map clusters these cell lines into two groups, one with strong immune suppressive function and other with less effect.
Melanoma NOS1 expression promotes dysfunctional IFN signaling.
Disease, Disease stage, Cell line
View SamplesThis study seeks to understand the mechanisms behind enhanced lymphomagenesis observed in ImHABCL6/Uchl1 mice compared with ImHABCL6 alone. As the lymphomas arise from germinal center (GC) B-cells, we reasoned that transgenic Uchl1 altered the gene expression patterns in GC B-cells from these animals. We therefore isolated pre-malignant GC B-cells and examined the gene expression patterns to identify pathways affected by the addition of Uchl1.
UCH-L1 is induced in germinal center B cells and identifies patients with aggressive germinal center diffuse large B-cell lymphoma.
Specimen part
View SamplesThe androgen receptor (AR) is a key driver of prostate cancer (PC), even in the state of castration-resistant PC (CRPC), and frequently even after treatment with second-line hormonal therapies such as abiraterone and enzalutamide. The persistence of AR activity via both ligand-dependent and ligand-independent (including constitutively active AR splice variants) mechanisms highlights the unmet need for alternative approaches to block AR signaling in CRPC. We investigated the transcription factor GATA2 as a regulator of AR signaling and a novel therapeutic target in PC. We demonstrate that GATA2 directly promotes AR expression (both full-length and splice variant), resulting in a strong positive correlation between GATA2 and AR expression in PC (cell lines and patient specimens). Conversely, GATA2 expression is repressed by androgen and AR, suggesting a negative feedback regulatory loop that, upon androgen deprivation, derepresses GATA2 to contribute to AR overexpression in CRPC. Simultaneously, GATA2 is necessary for optimal transcriptional activity of AR (both full-length and splice variant). GATA2 co-localizes with AR and FOXA1 on chromatin to enhance recruitment of steroid receptor coactivators (SRCs) and formation of the transcriptional holocomplex. In agreement with these important functions, high GATA2 expression and transcriptional activity predicted for worse clinical outcome in PC patients. A GATA2 small molecule inhibitor suppressed the expression and transcriptional function of AR (both full-length and splice variant) and exerted potent anticancer activity against PC cell lines. We propose pharmacological inhibition of GATA2 as a first-in-field approach to target AR expression and function and improve outcomes in CRPC.
GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex.
Cell line
View SamplesTendon is a hypocellular tissue that contains functional cable-like units of type I collagen responsible for the transmission of force from muscle to bone. In the setting of injury or disease, patients can develop chronic tendinopathies that are characterized by pain, loss of function and persistent inflammatory changes that are often difficult to treat. Platelet-rich plasma (PRP) has shown promise in the treatment of chronic tendinopathy, but little is known about the mechanisms by which PRP can improve tendon healing. PRP contains many different growth factors and cytokines, and since these proteins can both activate and inhibit various signaling pathways it has been challenging to determine precisely which signaling pathways and cellular responses are most important. Using state-of-the-art bioinformatics tools and genome wide-expression profiling, the purpose of this study was to determine the signaling pathways activated within cultured tendon fibroblasts in response to PRP treatment.
Platelet-Rich Plasma Activates Proinflammatory Signaling Pathways and Induces Oxidative Stress in Tendon Fibroblasts.
Specimen part
View SamplesThe role of FoxP3+ regulatory T (Treg) cells in the maintenance of immunological tolerance is well established. Recently, genome-wide association studies (GWAS) in humans have associated polymorphisms within the BACH2 locus encoding the transcription factor BTB and CNC homology 1, basic leucine zipper transcription factor 2 (Bach2) with diverse allergic and autoimmune diseases including asthma, multiple sclerosis, Crohn's disease, celiac disease, generalized vitiligo and type 1 diabetes. Common to these diseases is a failure to adequately maintain immunological tolerance. However, a role for Bach2 in this process has not been established.Here, by assessing the phenotype of mice in which the Bach2 gene is disrupted, we demonstrate a non-redundant role for Bach2 in the prevention of a spontaneous lethal inflammatory disorder predominantly affecting the lung and gut with excessive T helper 2 (Th2) responses and formation of circulating autoantibodies. Bach2 was necessary for efficient induction of FoxP3 expression both during thymopoesis and upon stimulation of nave peripheral CD4+ T cells under Treg polarizing conditions in vitro. Consequently, in bone marrow reconstitution experiments, Bach2 expression within the haematopoetic system was necessary for suppression of lethal autoimmunity in a manner that was FoxP3 dependent. These findings demonstrate a requirement for Bach2 in early lineage commitment of both thymic and induced Treg cells and point to shared mechanisms that underlie diverse allergic and autoimmune disorders that may serve as targets in the development of novel therapeutic strategies.
BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis.
Sex, Specimen part
View Samples