refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 114 results
Sort by

Filters

Technology

Platform

accession-icon GSE56555
Identification of FoxO target genes during C-26 cancer cachexia
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Forkhead BoxO (FoxO) transcription factors expressed in adult skeletal muscle promote muscle atrophy during various catabolic conditions. We have identified the genome wide target genes and biological networks regulated by FoxO in skeletal muscle during Colon-26 (C-26) cancer cachexia.

Publication Title

Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE41176
Time course analysis of gene expression in BCR-stimulated splenic wild type and TAK1-/- B cell
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The activation signaling of transcription factor nuclear factor-kB (NF-kB) plays central role for immune system. One of key kinase mediating this pathway is TAK1 in adaptive and innate immunity.

Publication Title

Positive feedback within a kinase signaling complex functions as a switch mechanism for NF-κB activation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE14577
A Gene Signature for Chronic Fatigue Syndrome
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Human genome-wide Affymetrix GeneChip arrays were used to compare the levels of gene expression in the peripheral blood mononuclear cells (PMBCs) of male patients with post-viral chronic fatigue (n=8) and male healthy control subjects (n=7). Patients and healthy subjects differed significantly in the level of expression of 366 genes. Analysis of the differentially expressed genes indicated functional implications in immune modulation, oxidative stress and apoptosis. Prototype biomarkers were identified on the basis of differential levels of gene expression and possible biological significance. Differential expression of key genes identified in this study offer an insight into the possible mechanism of chronic fatigue following infection. The representative biomarkers identified in this research appear promising as potential biomarkers for diagnosis and treatment.

Publication Title

A gene signature for post-infectious chronic fatigue syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13400
Exposure of SKGT4 and HET-1A cell lines to deoxycholic acid (DCA)
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An integrative genomic approach in oesophageal cells identifies TRB3 as a bile acid responsive gene, downregulated in Barrett's oesophagus, which regulates NF-kappaB activation and cytokine levels.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13376
Exposure of Barrett's associated adenocarcinoma cell lines SKGT4 to deoxycholic acid (DCA)
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The involvment of bile acids such as deoxycholic acid (DCA) in gastro-esophageal reflux disease and subsequent Barretts metaplsia has been postulated. This study examines gene expression induced by exposure to DCA in esophageal cells and may be utilised in cross-comparisons with data derived from gene expression studies of Barretts esophagus and associated adenocarcinoma.

Publication Title

An integrative genomic approach in oesophageal cells identifies TRB3 as a bile acid responsive gene, downregulated in Barrett's oesophagus, which regulates NF-kappaB activation and cytokine levels.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13378
Exposure of squamous esophageal cell line HET-1A to deoxycholic acid (DCA)
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The involvment of bile acids such as deoxycholic acid (DCA) in gastro-esophageal reflux disease and subsequent Barretts metaplsia has been postulated. This study examines gene expression induced by exposure to DCA in esophageal cells and may be utilised in cross-comparisions with data derived from gene expression studies of Barretts esophagus and associated adenocarcinoma. Additionally this study may be used to assess divergence in response to bile acids by comparisons with similar study performed in SKGT4 barrett''s assocaited adenocarcinoma cell line.

Publication Title

An integrative genomic approach in oesophageal cells identifies TRB3 as a bile acid responsive gene, downregulated in Barrett's oesophagus, which regulates NF-kappaB activation and cytokine levels.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40220
INTESTINAL FILTER FOR USE IN OESOPHAGEAL CANCER RESEARCH
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study utilise the examination of normal gastro-intestinal tissues to determine a tissue specific signal for use in deriving the intestinal signature of intestinal metaplasias of the oesophagus. Normal oesophageal, colonic and duodenal tissue biopsies were taken after informed consent and RNA was extracted following histological examination of adjacent tissues for normal aperaing mucosa.

Publication Title

The characterization of an intestine-like genomic signature maintained during Barrett's-associated adenocarcinogenesis reveals an NR5A2-mediated promotion of cancer cell survival.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42221
Comparative intraindividual transcriptome analysis of B-precursor ALL of childhood
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The objective of this study was the assessment of transcriptional dysregulation in particular with regard to B-cell differentiation factors. Most studies focus on cross-section analyses of various leukemia subtypes to identify differentially regulated genes lacking suitable reference models. Here we applied comparative intraindividual transcriptome analysis of B-precursor ALL of childhood, which introduces a side-by-side analysis of leukemic cells and matched normal lymphoblasts from the same individual in complete continuous remission after the end of re-induction therapy. This approach reduces noise by eliminating interindividual variability.

Publication Title

Aberrant ZNF423 impedes B cell differentiation and is linked to adverse outcome of ETV6-RUNX1 negative B precursor acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE13946
Comparison of gamma delta intraepithelial lymphocytes from DSS-treated and untreated colon
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

gamma delta intraepithelial lymphocytes were isolated from the colons of DSS-treated and untreated mice. Total RNAs were isolated and compared by Affymetrix DNA microarray.

Publication Title

Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14434
U1 Adaptors: a new gene silencing technology
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The goal of the microarray experiment was to do a head-to-head comparison of the U1 Adaptor technology with siRNA in terms of specificity at the genome-wide level. U1 Adaptors represent a novel gene silencing method that employs a mechanism of action distinct from antisense and RNA interference (RNAi). The U1 Adaptor is a bifunctional oligonucleotide having a Target Domain that is complementary to a site in the target gene's terminal exon and a U1 Domain that binds to the U1 small nuclear RNA (snRNA) component of the U1 small nuclear ribonucleoprotein (U1 snRNP) splicing factor. Tethering of U1 snRNP to the target pre-mRNA inhibits 3' end processing (i.e., polyA tail addition) leading to degradation of that RNA species within the nucleus thereby reducing mRNA levels. We demonstrate that U1 Adaptors can specifically inhibit both reporter and endogenous genes. Further, targeting the same gene either with multiple U1 Adaptors or with U1 Adaptors and small interfering RNAs (siRNAs), strongly enhances gene silencing, the latter as predicted from their distinct mechanisms of action. Such combinatorial targeting requires lower amounts of oligonucleotides to achieve potent silencing.

Publication Title

Gene silencing by synthetic U1 adaptors.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact