gamma delta intraepithelial lymphocytes were isolated from the colons of DSS-treated and untreated mice. Total RNAs were isolated and compared by Affymetrix DNA microarray.
Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury.
No sample metadata fields
View SamplesThe adult pancreas is capable of limited regeneration after injury, but has no defined stem cell population. The cell types and molecular signals that govern the production of new pancreatic tissue are not well understood. Here we show that inactivation of the SCF-type E3 ubiquitin ligase substrate recognition component Fbw7 induces pancreatic ductal cells to reprogram into -cells. The induced -cells resemble islet -cells in morphology and histology, express genes essential for -cell function, and release insulin upon glucose challenge. Thus, loss of Fbw7 appears to reawaken an endocrine developmental differentiation program in adult pancreatic ductal cells. Our study highlights the plasticity of seemingly differentiated adult cells, identifies Fbw7 as a master regulator of cell fate decisions in the pancreas, and reveals adult pancreatic duct cells as a latent multipotent cell type.
Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL.
Specimen part, Disease, Disease stage, Time
View SamplesThe purpose of this study was the principal investigation and frequency of RTK expression in primary T-ALLs. Primary initial T-ALLs were assessed regarding their transcriptome-wide expression profiles and screend for prominent RTK expression.
Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL.
Disease, Disease stage
View SamplesDeregulated RTK activity has been implicated as a causal leukemogenic factor in the context of molecular aberrations that perturb differentiation in the hematopoietic lineage such as in childhood ALL. A deeper understanding of RTK signaling processes on a system-wide scale will be key in defining critical components of signaling networks. To link RTK activity with in vivo output in primary ALL we took a functional approach, which combined SH2 domain binding, mass spectrometry, and transcriptome analyses. Structure and composition of evolving networks were highly diverse with few generic features determined by receptor and cell type. A combinatorial assembly of varying context-dependent and few generic signaling components at multiple levels likely generates output specificity. PAK2 was identified as a phosphoregulated FLT3 target, whose allosteric inhibition resulted in apoptosis of ALL cells. Our studies provide evidence that a functional approach to leukemia signaling may yield valuable information for a network-directed intervention.
Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL.
Specimen part, Time
View SamplesThis study delineated how small intestinal resident microflora impact gene expression in Paneth cells.
Symbiotic bacteria direct expression of an intestinal bactericidal lectin.
No sample metadata fields
View SamplesThe goal of this study was to identify potential AMH-induced genes and regulatory networks controlling regression by RNA-Seq transcriptome analysis of differences in Müllerian Duct mesenchyme between males (AMH signaling on) and females (AMH signaling off) in purified fetal Müllerian Duct mesenchymal cells. This analysis found 82 genes up-regulated in males during MD regression and identified Osterix (Osx)/Sp7, a key transcriptional regulator of osteoblast differentiation and bone formation, as a novel downstream effector of AMH signaling during MD regression. Overall design: Müllerian Duct mesenchymal cells mRNA profiles from 2-7 embryonic day 14.5 embryos were generated by deep sequencing, in triplicate, using Illumina HiSeq 2000.
<i>Osterix</i> functions downstream of anti-Müllerian hormone signaling to regulate Müllerian duct regression.
Sex, Specimen part, Cell line, Subject
View SamplesThe Lim1 gene has essential functions during several stages of kidney development. In particular, a tissue specific knockout in the early metanephric mesenchyme results in the formation of the earliest nephron precursor, the renal vesicle, but failure of this structure to progress to the next stage, the comma shaped body. To better understand the molecular nature of this developmental arrest we used a laser capture microdissection-microarray strategy to examine the perturbed gene expression pattern of the mutant renal vesicles. Among the genes found differently expressed were Chrdl2, an inhibitor of BMP signaling, the pro-apoptotic factor Bmf, as well as myob5, an atypical myosin which modulates chemokine and transferring signaling, and pdgfr1, which is important in epithelial folding. Of particular interest, the microarray data indicated that the Dkk1 gene, which encodes an inhibitor of Wnt signaling, was downregulated nine fold in mutants. This was confirmed by in situ hybridizations. It is interesting to note that Lim1 and Dkk1 mutant mice have striking similarities in phenotype. These results suggest that the Dkk1 gene might be a key downstream effector of Lim1 function.
Laser capture-microarray analysis of Lim1 mutant kidney development.
No sample metadata fields
View SamplesBACKGROUND: Lim1 is a homeobox gene that is essential for nephrogenesis. During metanephric kidney development, Lim1 is expressed in the nephric duct, ureteric buds, and the induced metanephric mesenchyme. Conditional ablation of Lim1 in the metanephric mesenchyme blocks the formation of nephrons at the nephric vesicle stage, leading to the production of small, non-functional kidneys that lack nephrons.
Gene expression profiles in developing nephrons using Lim1 metanephric mesenchyme-specific conditional mutant mice.
No sample metadata fields
View SamplesFetal liver of E14.5 RNaseh2b KOF and Rnaseh2b wild type embryos was isolated, RNA was extracted and microarray analysis using Affymetrix Mouse 430 2.0 gene chip was performed
Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity.
Specimen part
View Samples