Aims/hypothesis Due to their ability to regulate various signalling pathways (cytokines, hormones, growth factors), the suppressor of cytokine signalling (SOCS) proteins are thought to be promising therapeutic targets for metabolic and inflammatory disorders. Hence, their role in vivo has to be precisely determined.
Constitutive expression of suppressor of cytokine signalling-3 in skeletal muscle leads to reduced mobility and overweight in mice.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.
Specimen part, Treatment
View SamplesTreatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.
Specimen part, Treatment
View SamplesTranscriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.
Transcriptome profiling of sleeping, waking, and sleep deprived adult heterozygous Aldh1L1 - eGFP-L10a mice.
Disease
View SamplesTranscriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.
Effects of sleep and wake on oligodendrocytes and their precursors.
Specimen part
View SamplesPrecociously disseminated cancer cells may seed quiescent sites of future metastasis if they can protect themselves from immune surveillance. However, there is little knowledge about how such sites might be achieved. Here we present evidence that prostate cancer stem-like cells (CSC) can be found in histopathologically negative prostate draining lymph nodes (PDLN) in mice harboring oncogene-driven prostate intraepithelial neoplasia (mPIN). PDLN-derived CSC were phenotypically and functionally identical to CSC obtained from mPIN lesions, but distinct from CSCs obtained from frank prostate tumors. CSC derived from either PDLN or mPIN used the extracellular matrix protein Tenascin-C (TNC) to inhibit T cell receptor-dependent T cell activation, proliferation and cytokine production. Mechanistically, TNC interacted with 51 integrin on the cell surface of T cells, inhibiting reorganization of the actin-based cytoskeleton therein required for proper T cell activation. CSC from both PDLN and mPIN lesions also expressed CXCR4 and migrated in response to its ligand CXCL12, which was overexpressed in PDLN upon mPIN development. CXCR4 was critical for the development of PDLN-derived CSC, as in vivo administration of CXCR4 inhibitors prevented establishment in PDLN of an immunosuppressive microenvironment. Taken together, our work establishes a pivotal role for TNC in tuning the local immune response to establish equilibrium between disseminated nodal CSC and the immune system.
Tenascin-C Protects Cancer Stem-like Cells from Immune Surveillance by Arresting T-cell Activation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systematic classification of melanoma cells by phenotype-specific gene expression mapping.
Cell line
View SamplesTo investigate the impact of the iNKT cells on the tumor-infiltrating leukocytes in TRAMP mouse prostate cancer.
Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression.
Age, Specimen part
View SamplesGoal of the analysis was to identify the mechansisms accounting fo the synergy of T cells redirected to the tumor associated large T antigen and T cells redirected to the Uty minor histocompatibility antigen
T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors.
Specimen part, Treatment
View SamplesThe efficacy and exceptionally good tolerance of estrogen blockade in the treatment of breast cancer is well recognized but novel agents are required, especially to take advantage of the multiple consecutive responses obtained in breast cancer progressing following previous hormone therapy, thus delaying the use of cytotoxic chemotherapy with its usually serious side effects. Acolbifene (ACOL) is a novel and unique antiestrogen completely free of estrogen-like activity in both the mammary gland and uterus while preventing bone loss. From the preclinical and clinical data so-far available, this new antiestrogen represents a unique opportunity for a highly potent and specific blockade of estrogen action in the mammary gland and uterus while exerting estrogen-like beneficial effects in other tissues (selective estrogen receptor modulator or SERM activity). In order to better understand the specificity of action of acolbifene, we have used Affymetrix GeneChips containing 45,000 probe sets to analyze 34,000 genes to determine the specificity of this compound compared to the pure antiestrogen fulvestrant, as well as the mixed antagonists/agonists tamoxifen and raloxifene to block the effect of estradiol (E2) and to induce effects of their own on gene expression in the mouse mammary gland. The genes modulated by E2 were those identified in two separate experiments and validated by quantitative real-time PCR (Q_RT-PCR). Three hours after the single subcutaneous injection of E2 (0.05 ug), the simultaneous administration of acolbifene, fulvestrant, tamoxifen and raloxifene blocked by 98%, 62%, 43% and 92% the number of E2-upregulated genes, respectively. On the other hand, 70%, 10%, 25% and 55% of the genes down-regulated by E2 were blocked by the same compounds. Acolbifene was also the compound which, when used alone, modulated the smallest number of genes also influenced by E2, namely 4%, thus possibly explaining the potent tumoricidal action of this compound in human breast cancer xenografts where 61% of tumors disappeared, thus bringing a new paradigm in the hormonal therapy of breast cancer.
Specific transcriptional response of four blockers of estrogen receptors on estradiol-modulated genes in the mouse mammary gland.
Specimen part, Treatment
View Samples