Sexual dimorphism in mammals is mostly attributable to sex-related hormonal differences in fetal and adult tissues; however, this may not be the sole determinant. Though genetically-identical for autosomal chromosomes, male and female preimplantation embryos could display sex-specific transcriptional regulation which can only be attributted to the differences in sexual chromosome dosage.
Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts.
Sex, Specimen part
View SamplesA global genomics approach was used to identify patterns of immune dysregulation during H5N1 influenza virus infection as the host response, in particular hyperchemokinemia, is thought to contribute to the extreme pathology associated with this disease.
Gene expression analysis of host innate immune responses during Lethal H5N1 infection in ferrets.
Specimen part
View SamplesTHO/TREX is a conserved nuclear complex that functions in mRNP biogenesis at the interface of transcription-RNA export with a key role in preventing transcription-associated genome instability.
Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles.
No sample metadata fields
View SamplesCritical disease caused by the new 2009 pandemic influenza virus (nvH1N1) is a challenge for physicians and scientist. As evidenced in SARS and H5N1, the development of an effective immune response plays a key role to overcome viral diseases. We studied host`s gene expression signatures, cytokine and antibody responses along the first week of hospitalization in 19 critically ill patients with primary nvH1N1 pneumonia and two degrees of respiratory involvement. Presence of comorbidities and absence of immunosuppresory conditions were the common antecedents in both groups. The most severe patients (n=12) showed persistant respiratory viral secretion, increased levels of pro-inflammatory cytokines and chemokines in serum, and elevated systemic levels of two immunosuppresory cytokines (IL-10 and IL-1ra). Both groups were able to produce specific antibodies against the virus. The average day for antibody production was day 9 in the course of the disease, defining an early period of innate immunity and a late period of adaptive immunity. The most severe group evidenced a poor expression of a set of MHC class II and T cell receptor (TCR) related genes participating in antigen presentation and cell mediated immune responses in the late phase. 7 patients of this group finally died. This findings evidence that, as observed in sepsis, severe H1N1 disease course with immunoparalysis, which could explain the poor control of the virus along with the increased incidence of bacterial superinfection observed in these patients.
Host adaptive immunity deficiency in severe pandemic influenza.
Specimen part, Subject
View SamplesThese data can be used for evaluation of the clinical utility of the research-based PAM50 subtype predictor in predicting pathological complete response (pCR) and event-free survival (EFS) in women enrolled in the NeOAdjuvant Herceptin (NOAH) trial.
Research-based PAM50 subtype predictor identifies higher responses and improved survival outcomes in HER2-positive breast cancer in the NOAH study.
Age, Treatment, Race
View SamplessiRNA-mediated inhibition compared to untreated cells and cells transfected with nonsense siRNA
Overexpression of far upstream element (FUSE) binding protein (FBP)-interacting repressor (FIR) supports growth of hepatocellular carcinoma.
Specimen part, Cell line
View SamplesIn bacteria, the biosynthesis of cysteine is accomplished by two enzymes that are encoged by the cysK and cysM genes. CysM is also able to incorporate thiosulfate to produce S-sulfocysteine. In plant cells, the biosynthesis of cysteine occurs in the cytosol, mitochondria and chloroplasts. Chloroplasts contain two O-acetylserine(thiol)lyase homologs, which are encoded by the OAS-B and CS26 genes. An in vitro enzymatic analysis of the recombinant CS26 protein demonstrated that this isoform possesses S-sulfocysteine synthase activity and lacks O-acetylserine(thiol)lyase activity. In vivo functional analysis of this enzyme in knockout mutants demonstrated that mutation of cs26 suppressed the S-sulfocysteine synthase activity that was detected in wild type; furthermore, the mutants exhibited a growth phenotype, but penetrance depended on the light regime. The cs26 mutant plants also had reductions in chlorophyll content and photosynthetic activity (neither of which were observed in oas-b mutants), as well as elevated glutathione levels. However, cs26 leaves were not able to properly detoxify ROS, which accumulated to high levels under long-day growth conditions. The transcriptional profile of the cs26 mutant revealed that the mutation had a pleiotropic effect on many cellular and metabolic processes. Our finding reveals that S-sulfocysteine and the activity of S-sulfocysteine synthase play an important role in chloroplast function and are essential for light-dependent redox regulation within the chloroplast.
Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control.
No sample metadata fields
View SamplesGlycolytic Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of glyceraldehyde 3-phospate to 1,3-bisphosphoglycerate by coupling with the reduction of NAD+ to NADH. We generated mutants of the Arabidopsis plastidial GAPDH isoforms (At1g79530, At1g16300; GAPCp1, GAPCp2). gapcp double mutants (gapcp1 gapcp2) display a drastic phenotype of arrested root development and sterility.Complex interactions occurring between ABA and sugar signal transduction pathways have been shown, but the molecular mechanisms connecting both pathways are not well understood. Since we found drastic carbohydrate changes in gapcp1 gapcp2, we studied their response to ABA. by performing a microarray analysis comparing gapcp1 gapcp2 and wild type seedlings after a long term treatment with ABA.
Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: interaction between ABA and primary metabolism.
Specimen part, Treatment
View SamplesTo understand the funtion of Colorectal cancer GWAS results, we perform a comprehensive analysis using biofeatures of HCT116 colon cancer cell line and got a list of risk-asscociated SNP. Risk-associated SNP are likely exerting their effects through promoters or enhancer. In order to understand the importance of the genes with risk-associated SNP in their promoters and enhancers'' putatively targeted genes, we did a comparison of these genes between HCT116 colon cancer cell and normal colon and try to understand their function Overall design: Two biological replicates of HCT116 were compared to the data of two normal colon samples already deposited in GEO (GSM1010974 and GSM1010942).
Functional annotation of colon cancer risk SNPs.
No sample metadata fields
View SamplesCysteine occupies a central position in plant metabolism due to its biochemical functions. Arabidopsis thaliana cells contain different O-acetylserine(thiol)lyase (OASTL) enzymes that catalyze the biosynthesis of cysteine. Because they are localized in the cytosol, plastids and mitochondria, this results in multiple subcellular cysteine pools. Much progress has been made on the most abundant OASTL enzymes; however, information on the less abundant OASTL-like proteins has been scarce. To unequivocally establish the enzymatic reaction catalyzed by the minor cytosolic OASTL isoform CS-LIKE (AT5G28030), we expressed this enzyme in bacteria and characterized the purified recombinant protein. Our results demonstrate that CS-LIKE catalyzes the desulfuration of L-cysteine to sulfide plus ammonia and pyruvate. Thus, CS-LIKE is a novel L-cysteine desulfhydrase (EC 4.4.1.1), and we propose to designate it DES1. The impact and functionality of DES1 in cysteine metabolism was revealed by the phenotype of the T-DNA insertion mutants des1-1 and des1-2. Mutation of the DES1 gene leads to premature leaf senescence, as demonstrated by the increased expression of senescence-associated genes and transcription factors. Also, the absence of DES1 significantly reduces the total cysteine desulfuration activity in leaves, and there is a concomitant increase in the total cysteine content. As a consequence, the expression levels of sulfur-responsive genes are de-regulated, and the mutant plants show enhanced antioxidant defenses and tolerance to conditions that promote oxidative stress. Our results suggest that DES1 from Arabidopsis is an L-cysteine desulfhydrase involved in maintaining cysteine homeostasis, mainly at late developmental stages or under environmental perturbations.
Cysteine homeostasis plays an essential role in plant immunity.
No sample metadata fields
View Samples