refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 128 results
Sort by

Filters

Technology

Platform

accession-icon SRP051084
Transcriptome profiling for genes transcriptionally regulated by Smchd1 in lymphoma cell lines.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The aim of this study is to identify genes that are under the transcriptional control of the epigenetic modifier Smchd1 in mouse lymphoma cell lines. Methods: Total RNA was extracted using QIAGEN RNeasy Minikit from sorted lymphoma cell lines derived from mice either wild-type or null for Smchd1. 1µg total RNA was used to generate sequencing libraries for whole transcriptome analysis with Illumina's TruSeq RNA Sample Preparation Kit v2 as per standard protocols. Libraries were sequenced on HiSeq 2000 with Illumina TruSeq SBS Kit v3-HS reagents as either 100 bp single-end or paired-end reads at the Australian Genome Research Facility (AGRF), Melbourne. Reads were aligned to the mouse reference genome mm10 and mapped to known genomic features at the gene level using the Rsubread package (version 1.10.5) (Liao et al. 2013). Mapped reads were then summarized into gene-level counts using FeatureCounts (Liao et al. 2014). Overall design: Total RNA was extracted and purified from each cell line and their transcriptomes analysed by RNA-Seq.

Publication Title

Transcriptional profiling of the epigenetic regulator Smchd1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP053351
Genome-wide binding and mechanistic analyses of Smchd1 mediated epigenetic regulation [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The aim of this study is to identify genes that are under the transcriptional control of the epigenetic regulator Smchd1 in neural stem cells (NSCs) derived from E14.5 mouse brain Methods: Total RNA was extracted using an AllPrep DNA/RNA Mini Kit (Qiagen) from cultured neural stem cells derived from male mouse E14.5 brains either wild-type or null for Smchd1. 1 µg total RNA was used to generate sequencing libraries for whole transcriptome analysis with Illumina's TruSeq RNA Sample Preparation Kit v2 as per standard protocols. Libraries were sequenced on HiSeq 2000 with Illumina TruSeq SBS Kit v3-HS reagents as either 100 bp single-end or paired-end reads at the Australian Genome Research Facility (AGRF), Melbourne. Reads were aligned to the mouse reference genome mm10 and mapped to known genomic features at the gene level using the Rsubread package (version 1.10.5) (Liao et al. 2013). Mapped reads were then summarized into gene-level counts using FeatureCounts (Liao et al. 2014). Overall design: Total RNA was extracted and purified from each cell line and their transcriptomes analyzed by RNA-Seq.

Publication Title

Transcriptional profiling of the epigenetic regulator Smchd1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27970
ChIP-seq analysis reveals distinct H3K27me3 profiles associated with gene regulation
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27969
ChIP-seq analysis reveals distinct H3K27me3 profiles associated with gene regulation [mRNA profiling]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptional control is dependent on a vast network of epigenetic modifications. One epigenetic mark of particular interest is tri-methylation of lysine 27 on histone H3 (H3K27me3), which is catalyzed and maintained by the Polycomb Repressor Complex (PRC2). Although this histone mark is studied widely, the precise relationship between its local pattern of enrichment and regulation of gene expression is currently unclear. We have used ChIP-seq to generate genome wide maps of H3K27me3 enrichment, and have identified three enrichment profiles with distinct regulatory consequences. First, a broad domain of H3K27me3 enrichment across the body of genes corresponds to the canonical view of H3K27me3 as inhibitory to transcription. Second, a peak of enrichment around the transcription start site is commonly associated with bivalent genes, where H3K4me3 also marks the TSS. Finally and most surprisingly, we identified an enrichment profile with a peak in the promoter of genes that is associated with active transcription. Genes with each of these three profiles were found in different proportions in each of the cell types studied. The data analysis techniques developed here will be useful for the identification of common enrichment profiles for other histone modifications that have important consequences for transcriptional regulation.

Publication Title

ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40992
The effect on gene expression of Smchd1 deletion in various cell types
  • organism-icon Mus musculus
  • sample-icon 41 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Epigenetic regulator Smchd1 functions as a tumor suppressor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40734
The effect on gene expression of Smchd1 deletion in primary MEFs, transformed MEFs and MEF tumours
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Smchd1 appears to act as a tumour suppressor in the transformed fibroblast model. We find gene expression differences are most pronounced in the transformed MEFs. We always detect a small number of clustered genes and imprinted genes as differentially expressed, along with others involved in tumorigenesis.

Publication Title

Epigenetic regulator Smchd1 functions as a tumor suppressor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40880
The effect on gene expression of Smchd1 deletion in end stage lymphomas
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Smchd1 appears to act as a tumour suppressor in the E-Myc B cell lymphoma model. We find gene expression differences are most pronounced in the premalignant cells, and observe more variability in end stage lymphomas. We always detect a small number of clustered genes and imprinted genes as differentially expressed, along with others involved in tumorigenesis.

Publication Title

Epigenetic regulator Smchd1 functions as a tumor suppressor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40881
The effect on gene expression of Smchd1 deletion in premalignant pre-B cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Smchd1 appears to act as a tumour suppressor in the E-Myc B cell lymphoma model. We find gene expression differences are most pronounced in premalignant cells. We always detect a small number of clustered genes and imprinted genes as differentially expressed, along with others involved in tumorigenesis.

Publication Title

Epigenetic regulator Smchd1 functions as a tumor suppressor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40879
The effect on gene expression of Smchd1 deletion in pre-B cells from E17.5 E-Myc embryos
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Smchd1 appears to act as a tumour suppressor in the E-Myc mouse B cell lymphoma model. We find a small number of gene expression differences at E17.5 in the pre-B cells, before phenotypic differences are observed.

Publication Title

Epigenetic regulator Smchd1 functions as a tumor suppressor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP041829
Association of genes regulated by Ezh2 and trimethylation of histone 3 lysine 27
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Differentiation of naïve CD4+ T cells into effector (Th1, Th2 and Th17) and induced regulatory (iTreg) T cells requires lineage-specifying transcription factors and epigenetic modifications that allow appropriate repression or activation of gene transcription. The epigenetic silencing of cytokine genes is associated with the repressive H3K27 trimethylation mark, mediated by Ezh2 or Ezh1 methyltransferase components of the polycomb repressive complex 2 (PRC2). EZH2 over-expression and activating mutations are implicated in tumorigenesis and correlate with poor prognosis in several tumor types 35. This spurred the development of EZH2 inhibitors which, by inducing tumor cell growth arrest and cell death, show therapeutic promise in cancer. A role for Ezh2 in suppressing Th1 and Th2 cytokine production and survival has recently been reported. It is not entirely clear whether Ezh2-PRC2 plays a role in H3K27me3 in cytokine loci in naïve CD4+ T cells and whether H3K27me3 has a non-redundant role in T helper cell lineage differentiation and survival. Here, we investigate the effects of T cell-specific Ezh2 deletion to determine the role that Ezh2-PRC2 plays in regulating the fate of differentiating naïve CD4+ T cells. Loss of Ezh2 altered the expression of 1328 genes in Th0 and 1979 genes in iTreg cells. Gene expression changes were positively correlated in both cell types, indicating that Ezh2 targets similar genes in these cells. As expected, Ifng was one of the genes most increased in expression by following loss of Ezh2. In addition, expression of Tbx21 homolog Eomes, a transcription factor that regulates IFNG production, was also significantly increased. We then performed H3K27me3 ChIP-seq on Ezh2fl/fl and Ezh2fl/fl.CD4Cre Th0 cells. Consistent with cellular phenotype and RNA-seq data, we observed a loss of the H3K27me3 at Eomes, Il4 and Il10 loci . Very low levels of H3K27me3 marks were present at Ifng and Tbx21 loci in differentiated Ezh2fl/fl Th0 cells, suggesting that upon differentiation, upregulation or activation of transcription factors accounts for IFNG overproduction. A significant loss of H3K27me3 was observed >2kb upstream of Gata3 locus , however this did not result in increased transcription . Of the 22381 genes tested for changes in H3K27me3, 1360 showed a statistically significant decrease in Ezh2fl/fl.CD4Cre Th0 cells, compared to wildtype. Furthermore, 404 of these genes also showed a concomitant gain in expression in Ezh2fl/fl.CD4Cre Th0 cells, suggesting that these loci are likely direct Ezh2-PRC2 targets. Overall design: There are 3 biological replicates each of Ezh2fl/fl.CD4Cre and Ezh2fl/fl in both Th0 and iTreg cells for the RNA-seq experiment. There are 2 biological replicates each of Ezh2fl/fl.CD4Cre and Ezh2fl/fl in Th0 cells for the ChIP-seq experiment.

Publication Title

The polycomb repressive complex 2 governs life and death of peripheral T cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact