Arabidopsis plants were treated either with mock or MSB (0.2 mM of Menadione sodium bisulphite). <br></br>Tissue was sampled after 3, 6 and 24 hours.
Molecular analysis of menadione-induced resistance against biotic stress in Arabidopsis.
Age, Specimen part, Compound, Time
View SamplesAdvanced age is associated with chronic low-grade inflammation, which is usually referred to as inflammaging. Elderly are also known to have an altered gut microbiota composition. However, whether inflammaging is a cause or consequence of an altered gut microbiota composition is not clear. In this study gut microbiota from young or old conventional mice was transferred to young germ-free mice. Four weeks after gut microbiota transfer immune cell populations in spleen, Peyers patches, and mesenteric lymph nodes from conventionalized germ-free mice were analyzed by flow cytometry. In addition, whole-genome gene expression in the ileum was analyzed by microarray. Gut microbiota composition of donor and recipient mice was analyzed with 16S rDNA sequencing. Here we show by transferring aged microbiota to young germ-free mice that certain bacterial species within the aged microbiota promote inflammaging. This effect was associated with lower levels of Akkermansia and higher levels of TM7 bacteria and Proteobacteria in the aged microbiota after transfer. The aged microbiota promoted inflammation in the small intestine in the germ-free mice and enhanced leakage of inflammatory bacterial components into the circulation was observed. Moreover, the aged microbiota promoted increased T cell activation in the systemic compartment. In conclusion, these data indicate that the gut microbiota from old mice contributes to inflammaging after transfer to young germ-free mice.
Aged Gut Microbiota Contributes to Systemical Inflammaging after Transfer to Germ-Free Mice.
Sex, Specimen part, Treatment
View SamplesProcessing of Immunoglobulin heavy chain (IgH) mRNA is a paradigm for competition between splicing and polyadenylation. In plasma cells pre-mRNA is polyadenylated mainly at the promoter-proximal secretory site while B-cells utilize a cryptic 5 splice site in the last secretory-specific exon; these are mutually exclusive events for all IgH pre-mRNAs. Transcription elongation factor ELL2, more abundant in plasma cells relative to B-cells, was down-modulated by overexpression of heterogenous ribonucleoprotein F, a condition which reduced production of secretory IgH mRNA. Transfection of B-cells with ELL2 and the IgH reporter showed an accelerated use of the secretory poly(A) site, positioned in competition with the splice to M1; a small interfering RNA to ELL2 reduced expression of IgH secretory mRNA. Co-transcription factors ELL1 and PC4 were ineffective at driving secretory-poly(A) site use. ELL2 had little effect on poly(A) site choice with reporters containing tandem-linked poly(A) sites. Shorter forms of ELL2 protein result from both internal initiation at M186 and protein processing. An alternative splicing reporter driven by IgH or non-Ig promoters revealed that ELL2 and its M186 initiated form were able to accelerate exon skipping. Therefore, ELL2 influences IgH pre-mRNA processing through facilitating skipping of the alternative splice to the membrane form.
Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing.
No sample metadata fields
View SamplesExpression profiles of wild type migratory border cells (WTBC), non-migrating slbo mutant border cells (slboBC) and non-migrating follicle cells (FC)
Systematic analysis of the transcriptional switch inducing migration of border cells.
Sex, Specimen part
View SamplesNeurodegenerative brain disorders become more common in the aged. Most of these disorders are associated with or caused by selective death of certain neuronal subpopulations. The mechanisms underlying the differential vulnerability of certain neuronal populations are still largely unexplored and few neuroprotective treatments are available to date. Elucidation of these mechanisms may lead to a greater understanding of the pathogenesis and treatment of neurodegenerative diseases. Moreover, preconditioning by a short seizure confers neuroprotection following a subsequent prolonged seizure. Our goal is to identify pathways that confer vulnerability and resistance to neurotoxic conditions by comparing the basal and preconditioned gene expression profiles of three differentially vulnerable hippocampal neuron populations.
Gene expression changes after seizure preconditioning in the three major hippocampal cell layers.
No sample metadata fields
View SamplesPlant reproduction depends on the concerted activation of many genes to assure the correct communication between pollen and pistil. Here we queried the whole transcriptome of Arabidopsis thaliana in order to identify genes with specific reproductive functions.
Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis.
Specimen part
View SamplesDespite their different origin and function, both pollen tubes and root hairs share the same sort of apical growth mechanism, i.e., the spatially focused cell expansion at the very apex. Ion fluxes, membrane trafficking, the actin cytoskeleton and their interconnection via signaling networks have been identified as fundamental processes underlying this kind of growth. Several molecules involved in apical growth have been identified, but the genetic basis is far from being fully characterized. We have used Affymetrix Arabidopsis ATH1 GeneChips to obtain the expression profiles of isolated Arabidopsis root hairs. A comparison with the expression profile of flow-sorted pollen grains reveals an overlap in the expression of 4989 genes, which corresponds to 42% of the root hair transcriptome and 76% of the pollen transcriptome, respectively. Our comparison with transcriptional profiles of vegetative tissues by principal component analysis and hierarchical clustering shows a clear separation of these samples comprised of cell types with diffuse growth from the two cell types with apical growth. 277 genes are enriched and 49 selectively expressed, respectively, in root hairs and pollen. From this set of genes emerges an apical growth signature containing novel candidate genes for apical growth determination.
Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation.
No sample metadata fields
View SamplesCohesin acetylation by Eco1 during DNA replication establishes sister chromatid cohesion. We show that acetylation makes cohesin resistant to Wapl activity from S-phase until mitosis. Wapl turns out to be a key regulator of cohesin dynamics on chromosomes by controling cohesin maintenance following its establishment in S-phase and its role in chromosome condensation.
Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis.
Specimen part
View Samples