refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 393 results
Sort by

Filters

Technology

Platform

accession-icon GSE32892
A genome-wide and dose-dependent inhibition map of androgen receptor binding by small molecules reveals its regulatory program upon antagonism
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The androgen receptor plays a critical role throughout the progression of prostate cancer and is an important drug target for this disease. While chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-Seq) is becoming an essential tool in studying transcription and chromatin modification factors, it has rarely been employed in the context of drug discovery. Here we report the first publicly available genome-wide and dose-dependent inhibition landscape of AR binding by drug-like small molecules including correlation with binding strength using ChIP-Seq. Integration of sequence analysis, transcriptome profiling, cell viability assays and in vivo tumor inhibition studies enabled us to establish a direct cistrome-activity relationship for two novel potent AR antagonists. By selectively occupying the strongest binding sites, AR signaling remains active even when low androgen levels are low, a scenario characteristic of first-line androgen ablation therapy. Coupled cistrome and transcriptome profiling upon small molecule antagonism led to the identification of not only key direct downstream effectors of AR but also their mode of regulation: unbiased pathway mapping revealed that AR is a key modulator of steroid metabolism by forming a tightly controlled feedback loop with other nuclear receptor family members. Furthermore, we found AR has an extensive role in negative gene regulation and estrogen (related) receptor likely mediates its function as a transcriptional repressor. In conclusion, our study provides a global and dynamic view of ARs regulatory program upon antagonism, which may serve as a molecular basis for deciphering and developing AR therapeutics.

Publication Title

Dose-dependent effects of small-molecule antagonists on the genomic landscape of androgen receptor binding.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE59506
Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Neuronal function critically depends on coordinated subcellular distribution of mRNAs. Disturbed mRNA processing and axonal transport has been found in spinal muscular atrophy and could be causative for dysfunction and degeneration of motoneurons. Despite the advances made in characterizing the transport mechanisms of several axonal mRNAs, an unbiased approach to identify the axonal repertoire of mRNAs in healthy and degenerating motoneurons has been lacking. Here we used compartmentalized microfluidic chambers to investigate the somatodendritic and axonal mRNA content of cultured motoneurons by microarray analysis. In axons, transcripts related to protein synthesis and energy production were enriched relative to the somatodendritic compartment. Knockdown of Smn, the protein deficient in spinal muscular atrophy, produced a large number of transcript alterations in both compartments. Transcripts related to immune functions, including MHC class I genes, and with roles in RNA splicing were upregulated in the somatodendritic compartment. On the axonal side, transcripts associated with axon growth and synaptic activity were downregulated. These alterations provide evidence that subcellular localization of transcripts with axonal functions as well as regulation of specific transcripts with nonautonomous functions is disturbed in Smn-deficient motoneurons, most likely contributing to the pathophysiology of spinal muscular atrophy.

Publication Title

Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39291
Expression Profiles of HepG2 cells treated with following oxidants: 100M menadione, 200M TBH or 50M H2O2
  • organism-icon Homo sapiens
  • sample-icon 124 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

The transcriptomic changes induced in the human liver cell line HepG2 by 100M menadione, 200M TBH or 50M H2O2 after treatment for 0.5, 1, 2, 4, 6, 8 and 24h.

Publication Title

Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE53216
Expression profiles of HepG2 cells treated with low-, high-dose of acetaminophen and solvent control
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The transcriptomics changes induced in the human liver cell line HepG2 by low and high doses of acetaminophen and solvent controls after treatment for 4 time points (12h, 24h, 48h and 72h)

Publication Title

Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE63580
Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells
  • organism-icon Homo sapiens
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE63552
Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells (Affymetrix)
  • organism-icon Homo sapiens
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Understanding toxicity pathways of engineered nanomaterials (ENM) has recently been brought forward as a key step in 21st century ENM risk assessment. Molecular mechanisms linked to phenotypic end points is a step towards the development of toxicity tests based on key events, which may allow for grouping of ENM according to their mechanisms of action. This study identified molecular mechanisms underlying mitochondrial dysfunction in human bronchial epithelial BEAS 2B cells following exposure to one of the most studied multi-walled carbon nanotubes (MWCNTs; Mitsui-7). Asbestos was used as a positive control and a non-carcinogenic glass wool material was included as a negative fibre control. Decreased mitochondrial membrane potential (MMP) was observed for MWCNTs at a biologically relevant dose (0.25 g/cm2) and for asbestos at 2 g/cm2, but not for glass wool. Extensive temporal transcriptomic and microRNA expression analyses identified a 330-gene signature related to MWCNT- and asbestos-induced MMP. Fourty-nine of the MMP-associated genes showed highly similar expression patterns over time (six time points) and the majority was found to be regulated by two transcription factors strongly involved in mitochondrial homeostasis, APP and NRF1. In addition, four miRNAs were associated with MMP and one of them, miR-1275, was found to negatively correlate with a large part of the MMP-associated genes. Cellular processes such as gluconeogenesis, glucose metabolism, mitochondrial LC-fatty acid -oxidation and spindle microtubule function were enriched among the MMP-associated genes and miRNAs. These results are expected to be useful in the identification of key events in ENM-related toxicity pathways for the development of molecular screening techniques.

Publication Title

Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE84309
Gene expression profiles of KDM5A-/- MEFs with wild-type KDM5A or KDM5A-H483A mutant
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gene expression profiles of Immortalized KDM5A-/- MEFs with re-introduction of wild-type KDM5A or KDM5A-H483A mutant.

Publication Title

The KDM5 family is required for activation of pro-proliferative cell cycle genes during adipocyte differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP075276
RNA-seq analysis of hsf-1 mutant in C. elegans larval development
  • organism-icon Caenorhabditis elegans
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To understand the function and regulation of the C. elegans heat shock factor (HSF-1) in larval development, we have used ChIP-seq to analyze the occupancy of HSF1 and RNA Pol II in L2 larvae and young adult (YA) animals grown at 20°C or upon heat shock at 34°C for 30 min. In addition, we have used RNA-seq to analyze the transcriptomes of wild type (N2), hsf-1(ok600) mutants and hsf-1(ok600); rmSi1[hsf-1::gfp] L2 larvae grown at 20°C and characterized the gene expression change by heat shock in wild type (N2) animals at L2 stage. Overall design: Experiment type: RNA-seq. Biological Source: strain: N2, OG576, AM1061; developmental dtage: L2 Larva. Experimental Factors: temperature: 20 degree celsius.

Publication Title

E2F coregulates an essential HSF developmental program that is distinct from the heat-shock response.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE4911
Expression data from mouse E14.5 wt and RUNX2 -/- humeri
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We used microarrays to identify genes differentially expressed between mouse RUNX2 -/- and wt embryonic humeri at stage E14.5

Publication Title

Detection of novel skeletogenesis target genes by comprehensive analysis of a Runx2(-/-) mouse model.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64480
Treatment of human monocytes with TLR7 or TLR8 agonists
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Goal was to detect differences in response to TLR7 versus TLR8 agonists in human monocytes from healthy donors

Publication Title

Granzyme B expression is enhanced in human monocytes by TLR8 agonists and contributes to antibody-dependent cellular cytotoxicity.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact