refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 35 results
Sort by

Filters

Technology

Platform

accession-icon GSE33612
Expression data from human primary fibroblasts (IMR90) stably expressing H-RasV12 and treated with Metformin or vehicle
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Metformin reduces the incidence of cancer in diabetics or in animal models. At the cellular level, the effects of metformin include the inhibition of complex I of the mitochondrial electron transport chain, a reduction in ATP levels and the activation of the energy sensor AMP kinase. Metformin also prevents the production of reactive oxygen species in primary human cells expressing oncogenic ras and the DNA damage associated to the process.

Publication Title

Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE57573
Global gene expression profile of INS1E cells, hIAPP-INS1E cells and rIAPP-INS1E cells.
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Islet amyloid polypeptide (IAPP) is the main component of amyloid deposits in type 2 diabetic patients. Cells overexpressing the human transcript of IAPP (hIAPP) present defects in insulin secretion.

Publication Title

Inhibition of BACE2 counteracts hIAPP-induced insulin secretory defects in pancreatic β-cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP045305
mRNA sequencing of small intestinal tissue of germfree mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

With this study we wanted to evaluate the impact of murine norovirus infection of germfree mice and to compare it to germfree mice which have received fecal transplants of conventional mice. Overall design: whole small intestinal tissue analysis of 3 germfree, 3 germfree mice infected with murine norovirus and 3 conventionalized germfree mice

Publication Title

An enteric virus can replace the beneficial function of commensal bacteria.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58948
Gene expression analysis of crypt base epithelial cells from WT and Nod2-/- mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Nod2 has been extensively characterized as a bacterial sensor that induces an antimicrobial and inflammatory gene expression program. Therefore, it is unclear why Nod2 mutations that disrupt bacterial recognition are paradoxically among the highest risk factors for Crohns disease, which involves an exaggerated immune response directed at intestinal bacteria. Previous studies from our lab have shown that mice deficient in Atg16L1, another Crohns disease susceptibility gene, develop abnormalities in Paneth cells, specialized epithelial cells in the small intestine involved in antimicrobial responses.

Publication Title

Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP149190
Transcriptional profile of monocytes in the colon in response to C. rodentium infection
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Transcriptional profile of monocytes in the colon in response to C. rodentium infection Overall design: Eight samples have been analyzed. All are from Cd11b+Ly6C+ inflammatory monocytes sorted from colonic tissue 9 days after C. rodentium infection from Atg16L1HM(4) and WT(4) mice.

Publication Title

Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon SRP076844
WT and AUF1 KO satellite cell RNA-sequencing
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Following skeletal muscle injury, muscle stem cells (satellite cells) are activated, proliferate, and differentiate to form myofibers. We show that mRNA decay protein AUF1 regulates satellite cell function through targeted degradation of specific mRNAs. AUF1 targets certain mRNAs containing 3 AU-rich elements (AREs) for rapid decay. Auf1-/- (KO) mice undergo accelerated skeletal muscle wasting with age and impaired muscle repair following injury. Satellite cell mRNA analysis and regeneration studies demonstrate that auf1-/- satellite cell self-renewal is impaired due to increased stability and overexpression of ARE-mRNAs. Control of ARE-mRNA decay by AUF1 and potentially other ARE-binding proteins represents a mechanism for adult stem cell regulation and is implicated in human muscle wasting diseases. We report the RNA transcript expression profiles from sorted satellite cells isolated from wild type (WT) and AUF1-null (KO) mice hindlimb muscles Overall design: Examination of RNA transcript expression from satellite cells of two genotypes Please note that mice are bred through a C57BL/6 strain of 129 background.

Publication Title

Targeted mRNA Decay by RNA Binding Protein AUF1 Regulates Adult Muscle Stem Cell Fate, Promoting Skeletal Muscle Integrity.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE17665
Methamphetamine preconditioning responses to methamphetamine-induced injury in the rat ventral midbrain
  • organism-icon Rattus norvegicus
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Methamphetamine (METH) is an illicit drug which is neurotoxic to the mammalian brain. Numerous studies have revealed significant decreases in dopamine and serotonin levels in the brains of animals exposed to moderate-to-large METH doses given within short intervals of time. In contrast, repeated injections of small nontoxic doses of the drug followed by a challenge with toxic METH doses afford significant protection against monoamine depletion. The present study was undertaken to test the possibility that repeated injections of the drug might be accompanied by transcriptional changes involved in rendering the nigrostriatal dopaminergic system refractory to METH toxicity. Our results confirm that METH preconditioning can provide significant protection against METH-induced striatal dopamine depletion. In addition, the presence and absence of METH preconditioning were associated with substantial differences in the identity of the genes whose expression was affected by a toxic METH challenge.

Publication Title

Methamphetamine preconditioning alters midbrain transcriptional responses to methamphetamine-induced injury in the rat striatum.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon SRP043376
Genome-wide transcriptome analyses by the RNA-seq method
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We performed the whole transcriptome analysis in Zscan4 positive ES cells (Em+) and Zscan4 negative ES cells (Em-) by using FACS-sorted MC1-ZE7 ES cells. Overall design: Whole RNA-seq in Zscan4 positive and negative cells

Publication Title

Transient bursts of Zscan4 expression are accompanied by the rapid derepression of heterochromatin in mouse embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP158121
A distinct isoform of ZNF207 controls self-renewal and pluripotency of human embryonic stem cells [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Self-renewal and pluripotency in human embryonic stem cells (hESCs) depends upon the function of a remarkably small number of master transcription factors (TFs) that include OCT4, SOX2, and NANOG. Endogenous factors that regulate and maintain the expression of master TFs in hESCs remain largely unknown and/or uncharacterized. We use a genome-wide, proteomics approach to identify proteins associated with the OCT4 enhancer. We identify known OCT4 regulators, plus a subset of potential regulators including a zinc finger protein, ZNF207, that plays diverse roles during development. In hESCs, ZNF207 partners with master pluripotency TFs to govern self-renewal and pluripotency while simultaneously controlling commitment of cells towards ectoderm through direct regulation of neuronal TFs, including OTX2. The distinct roles of ZNF207 during differentiation occur via isoform switching. Thus, a distinct isoform of ZNF207 functions in hESCs at the nexus that balances pluripotency and differentiation to ectoderm. Overall design: examine gene expression changes in ZNF207 knock down hESCs

Publication Title

A distinct isoform of ZNF207 controls self-renewal and pluripotency of human embryonic stem cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP094550
Transcriptomic and anatomic parcellation of 5-HT3AR expressing cortical interneuron subtypes revealed by single-cell RNA sequencing
  • organism-icon Mus musculus
  • sample-icon 204 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Cortical GABAergic interneurons constitute a highly diverse population of inhibitory neurons that are key regulators of cortical microcircuit function. An important and heterogeneous group of cortical interneurons specifically expresses the serotonin receptor 3A (5-HT3AR) but how this diversity emerges during development is poorly understood. Here we use single-cell transcriptomics to identify gene expression patterns operating in Htr3a-GFP+ interneurons during early steps of cortical circuit assembly. We identify 3 main molecular types of Htr3a-GFP+ interneurons, each displaying distinct developmental dynamics of gene expression. The transcription factor Meis2 is specifically enriched in a type of Htr3a-GFP+ interneurons spatially confined to the cortical white matter. These MEIS2 expressing interneurons appear to originate from a restricted region located at the embryonic pallial-subpallial boundary. Overall, this study identifies MEIS2 as a subclass-specific marker for 5-HT3AR-containing interstitial interneurons and demonstrates that the transcriptional and anatomical parcellation of cortical interneurons is developmentally coupled. Overall design: Single cell transcriptomics of cortical interneurons FACS sorted according to GFP-Htr3a+. Acquired from mouse brains of 3 different developmental ages: E18, P2, P5

Publication Title

Transcriptomic and anatomic parcellation of 5-HT<sub>3A</sub>R expressing cortical interneuron subtypes revealed by single-cell RNA sequencing.

Sample Metadata Fields

Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact