refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 484 results
Sort by

Filters

Technology

Platform

accession-icon GSE68735
caArray_willm-00140: TARGET-ALL Expression: Children's Oncology Group Study 9906 for High-Risk Pediatric ALL
  • organism-icon Homo sapiens
  • sample-icon 204 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene Expression Classifiers for Minimal Residual Disease and Relapse Free Survival Improve Outcome Prediction and Risk Classification in Children with High Risk Acute Lymphoblastic Leukemia: A Children's Oncology Group Study

Publication Title

Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE11877
Children's Oncology Group Study 9906 for High-Risk Pediatric ALL
  • organism-icon Homo sapiens
  • sample-icon 193 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

PAPER 1:"Identification of novel subgroups of high-risk pediatric precursor B acute lymphoblastic leukemia (B-ALL) by unsupervised microarray analysis: clinical correlates and therapeutic implications. A Children's Oncology Group (COG) study."

Publication Title

Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia.

Sample Metadata Fields

Sex, Specimen part, Race

View Samples
accession-icon GSE68720
caArray_EXP-520: Gene Expression Profiles Predictive of Outcome and Age in Infant Acute Lymphoblastic Leukemia: a Children's Oncology Group Study
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiling was performed on 97 cases of infant ALL from Children's Oncology Group Trial P9407. Statistical modeling of an outcome predictor revealed 3 genes highly predictive of event-free survival (EFS), beyond age and MLL status: FLT3, IRX2, and TACC2. Low FLT3 expression was found in a group of infants with excellent outcome (n = 11; 5-year EFS of 100%), whereas differential expression of IRX2 and TACC2 partitioned the remaining infants into 2 groups with significantly different survivals (5-year EFS of 16% vs 64%; P < .001). When infants with MLL-AFF1 were analyzed separately, a 7-gene classifier was developed that split them into 2 distinct groups with significantly different outcomes (5-year EFS of 20% vs 65%; P < .001). In this classifier, elevated expression of NEGR1 was associated with better EFS, whereas IRX2, EPS8, and TPD52 expression were correlated with worse outcome. This classifier also predicted EFS in an independent infant ALL cohort from the Interfant-99 trial. When evaluating expression profiles as a continuous variable relative to patient age, we further identified striking differences in profiles in infants less than or equal to 90 days of age and those more than 90 days of age. These age-related patterns suggest different mechanisms of leukemogenesis and may underlie the differential outcomes historically seen in these age groups.

Publication Title

Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children's Oncology Group study.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Race

View Samples
accession-icon GSE10798
Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens
  • organism-icon Citrus sinensis
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Citrus Genome Array (citrus)

Description

We have used the citrus GeneChip array (GPL5731) to survey the transcription profiles of sweet orange in response to the bacterial pathogens Xanthomonas axonopodis pv. citri (Xac) and Xanthomonas axonopodis pv. aurantifolii (Xaa). Xac is the causal agent of the citrus canker disease on a wide range of citrus species, including sweet oranges (Citrus sinensis). On the other hand, Xaa is pathogenic to Mexican lime (Citrus aurantifolia) only, and in sweet orange it triggers a defense response. In order to identify the genes induced during the defense response (Xaa-responsive genes) or citrus canker development (Xac-responsive genes), we conducted microarrays hybridization experiments at 6 and 48 hours after bacterial infiltration (habi). The analysis revealed that genes commonly modulated by Xac and Xaa are associated with basal defenses normally triggered by pathogen-associated molecular patterns, including those involved in reactive oxygen species production and lignification. Significantly, Xac-infected leaves showed considerable changes in the transcriptional profiles of defense-, cell wall-, vesicle trafficking- and cell growth-related genes between 6 and 48 habi. This is consistent with the notion that Xac suppresses host defenses near the beginning of the infection and simultaneously changes the physiological status of the host to promote cell enlargement and division. Finally, Xaa triggered a MAP kinase signaling pathway involving WRKY and ethylene-responsive transcriptional factors known to activate downstream defense genes.

Publication Title

Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. aurantifolii.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41909
IL-7 and IL-15 instruct the generation of human memory stem T cells from nave precursors
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The identification of the most appropriate T-cell subset to ensure optimal persistence and anti-tumor activity is a major goal of cancer immunotherapy. We identified a novel post-mitotic CD45RA+CD62L+ T cell subpopulation (TTN), generated in vitro upon activation of nave T (TN) cells with beads conjugated to anti-CD3 and anti-CD28 antibodies. This cell population is highly proliferative, produces low levels of IFNg and cytotoxic molecules, and requires IL-7 and IL-15 for in vitro expansion.

Publication Title

IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28997
Function-based discovery of significant transcriptional temporal patterns in insulin-stimulated muscle cells
  • organism-icon Rattus norvegicus
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Background: Insulin's effect on protein synthesis (translation of transcripts) and post-translational modifications, especially those involving reversible modifications such as phosphorylation of various signaling proteins, are extensively studied. On the other hand, insulin's effect on the transcription of genes, especially of transcriptional temporal patterns, is not well investigated in the literature.

Publication Title

Function-based discovery of significant transcriptional temporal patterns in insulin stimulated muscle cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE12205
Effect of PTP inhibition on changes in gene expression after Cr(VI) exposure
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Although the consequences of genotoxic injury include cell cycle arrest and apoptosis, cell survival responses after genotoxic injury can produce intrinsic death-resistance and contribute to the development of a transformed phenotype. Protein tyrosine phosphatases (PTPs) are integral components of key survival pathways, and are responsible for their inactivation, while PTP inhibition is are often associated with enhanced cell proliferation. Our aim was to elucidate signaling events that modulate cell survival after genotoxin exposure. Diploid human lung fibroblasts (HLF) were treated with Cr(VI) (as Na2CrO4), a well known human respiratory carcinogen that induces a wide spectrum of DNA damage, in the presence and absence of a broad-range PTP inhibitor, sodium orthovanadate. Notably, PTP inhibition abrogated Cr(VI)-induced clonogenic lethality. The enhanced survival of Cr(VI)-exposed cells after PTP inhibition was predominantly due to a bypass of cell cycle arrest and was not due to decreased Cr uptake as evidenced by unchanged Cr-DNA adduct burden. Additionally, the bypass of Cr-induced growth arrest by PTP inhibition, was accompanied by a decrease in Cr(VI)-induced expression of cell cycle inhibiting genes, and an increase in the Cr(VI)-induced expression of cell cycle promoting genes. Importantly, PTP inhibition resulted in an increase in forward mutations at the HPRT locus, supporting the hypothesis that PTP inhibition in the presence of DNA damage may lead to genomic instability, via bypass of cell cycle checkpoints.

Publication Title

Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: enhanced survival and mutagenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48964
Expression data from Adipose Stem Cells (ASC) from morbidly obese and non-obese individuals
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The adipose tissue is an endocrine regulator and a risk factor for atherosclerosis and cardiovascular disease when by excessive accumulation induces obesity. Although the adipose tissue is also a reservoir for stem cells (ASC) their function and stemcellness has been questioned. Our aim was to investigate the mechanisms by which obesity affects subcutaneous white adipose tissue (WAT) stem cells.

Publication Title

Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP041263
RUNX3 Facilitates Growth of Ewing Sarcoma Cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Ewing sarcoma is an aggressive pediatric small round cell tumor that predominantly occurs in bone. Approximately 85% of Ewing sarcomas harbor the EWS/FLI fusion protein, which arises from a chromosomal translocation, t(11:22)(q24:q12). EWS/FLI interacts with numerous lineage-essential transcription factors to maintain mesenchymal progenitors in an undifferentiated state. We previously showed that EWS/FLI binds the osteogenic transcription factor RUNX2 and prevents osteoblast differentiation. In this study, we investigated the role of another Runt-domain protein, RUNX3, in Ewing sarcoma. RUNX3 participates in mesenchymal-derived bone formation and is a context dependent tumor suppressor and oncogene. RUNX3 was detected in all Ewing sarcoma cells examined, whereas RUNX2 was detected in only 73% of specimens. Like RUNX2, RUNX3 binds to EWS/FLI via its Runt domain. EWS/FLI prevented RUNX3 from activating the transcription of a RUNX-responsive reporter, p6OSE2. Stable suppression of RUNX3 expression in the Ewing sarcoma cell line A673 delayed colony growth in anchorage independent soft agar assays and reversed expression of EWS/FLI-responsive genes. These results demonstrate an important role for RUNX3 in Ewing sarcoma. Overall design: RNA-seq to compare transcriptiome of control A673 ewing sarcoma cells stably expression a non-target or RUNX3 shRNA

Publication Title

RUNX3 facilitates growth of Ewing sarcoma cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58812
Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response
  • organism-icon Homo sapiens
  • sample-icon 98 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Triple-negative (TN) breast cancers need to be refined in order to identify therapeutic subgroups of patients.

Publication Title

Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response.

Sample Metadata Fields

Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact