Heat stress is one of the most prominent and deleterious environmental threads affecting plant growth and development. Upon high temperatures, plants launch specialized gene expression programs that promote stress protection and survival. These programs involve global and specific changes at the transcriptional and translational levels. However the coordination of these processes and their specific role in the establishment of the heat stress response is not fully elucidated.
Analysis of genome-wide changes in the translatome of Arabidopsis seedlings subjected to heat stress.
Specimen part
View SamplesChe-1 is a RNA Polymerase II binding protein involved in the regulation of gene transcription. Che-1 emerges as an important adaptor that connects transcriptional regulation, cell-cycle progression, checkpoint control, and apoptosis.
Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy.
Cell line, Treatment
View SamplesThe Foxo transcription factors regulate multiple cellular functions. Foxo1 and Foxo3 are highly expressed in granulosa cells of ovarian follicles. Selective depletion of the Foxo1 and Foxo3 genes in granulosa cells revealed a novel ovarian-pituitary endocrine feedback loop characterized by: 1) undetectable levels of serum FSH but not LH, 2) reduced expression of the pituitary Fshb gene and its transcriptional regulators and 3) ovarian production of a factor(s) that suppresses pituitary cell Fshb. Equally notable and independent of FSH, depletion of Foxo1/3 altered the expression of specific genes associated with follicle growth versus apoptosis by disrupting critical regulatory interactions of Foxo1/3 with the activin and BMP2 pathways, respectively. As a consequence, granulosa cell proliferation and apoptosis were decreased. These data provide the first evidence that Foxo1/3 divergently regulate follicle growth or death by interacting with the activin and BMP pathways in granulosa cells and by modulating pituitary FSH production.
FOXO1/3 depletion in granulosa cells alters follicle growth, death and regulation of pituitary FSH.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide methylation analysis in vestibular schwannomas shows putative mechanisms of gene expression modulation and global hypomethylation at the HOX gene cluster.
Specimen part
View SamplesBackground: Schwannomas and grade I meningiomas are non-metastatic neoplasms that shares the common mutation of gene NF2. They usually appear in Neurofibromatosis type 2 patients. Currently, there is no drug treatment available for both tumors, so the use of wide expression technologies is crucial to find those therapeutic targets.
Global expression profile in low grade meningiomas and schwannomas shows upregulation of PDGFD, CDH1 and SLIT2 compared to their healthy tissue.
Specimen part
View SamplesVestibular schwannomas are intracranial tumors that affects unilateral and sporadically or bilateral when is associated to Neurofibromatosis type 2 syndrome. The hallmark of the disease is the biallelic inactivation by NF2 gene mutation or LOH of chromosome 22q, where this gene harbors. In this work, we used Infinium HumanMethylation 450K BeadChip microarrays in a series of 36 vestibular schwannomas, 4 non-vestibular schwannomas and 5 healthy nerves. Our results shows a trend to hypomethylation in schwannomas. Furthermore, HOX genes, located at 4 clusters in the genome, displayed hypomethylation in numerous CpG sites in vestibular but not in non-vestibular schwannomas. Additionally, several microRNA and protein-coding genes were found hypomethylated at promoter regions and confirmed by expression analysis; including miRNA-199a1, miRNA-21, MET and PMEPA1. We also detected methylation patterns that might be involved in alternative transcripts of several genes such as NRXN1 or MBP; that would increase the complexity of methylation-expression. Overall, our results shows specific epigenetic signatures in several coding genes and microRNA that could be used in the finding of potential therapeutic targets.
Genome-wide methylation analysis in vestibular schwannomas shows putative mechanisms of gene expression modulation and global hypomethylation at the HOX gene cluster.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A comprehensively characterized cell line panel highly representative of clinical ovarian high-grade serous carcinomas.
Sex, Specimen part, Disease
View SamplesThis study aimed to generate a new panel of comprehensively, genomically characterized high-grade serous ovarian carcinoma (HGSOC) cell line and xenograft models. Multidimensional genomic data were generated and compared between cell lines/xenografts and the tumours they were derived from, indicating the cell lines/xenografts are highly similar to their patient-matched tumours. Cell line/xenograft data were also compared to TCGA ovarian tumours to show the cell lines are good models of clinical HGSOC.
A comprehensively characterized cell line panel highly representative of clinical ovarian high-grade serous carcinomas.
Sex, Disease
View SamplesVestibular Schwannomas are benign neoplasms that arise from the vestibular nerve. The hallmark of these tumors is the biallelic inactivation of NF2. Transcriptomic alterations, such as the Nrg1/ErbB2 pathway, have been described in Schwannomas. Here, we have performed a whole transcriptomic analysis in 31 vestibular Schwannomas and 9 control nerves in the Affymetrix Gene 1.0ST platform, validated by quantitative Real-Time PCR using TaqMan Low Density Arrays. We performed a mutational analysis of NF2 by PCR/dHPLC and MLPA as well as a microsatellite marker analysis of the loss of heterozygosity of chromosome 22q. The microarray analysis showed that 1516 genes were deregulated, and 48 of the genes were validated by qRT-PCR. At least two genetic hits (allelic loss and/or gene mutation) in NF2 were found in 16 tumors, seven cases showed one hit and eight tumors showed no NF2 alteration. As conclusion, MET and associated genes such as ITGA4/B6, PLEXNB3/SEMA5 and CAV1 showed a clear deregulation in vestibular Schwannomas. In addition, androgen receptor (AR) downregulation may denote a hormonal effect or cause in this tumor. Furthermore, the osteopontin gene (SPP1), which is involved in Merlin protein degradation, was upregulated, which suggests that this mechanism may also exert a pivotal role in Schwannoma Merlin depletion. Finally, no major differences were found between tumors of different sizes, histological types or NF2 status, which suggests that at the mRNA level all Schwannomas, regardless of molecular and clinical characteristics, may share common features that can be used in the fight against them.
Microarray analysis of gene expression in vestibular schwannomas reveals SPP1/MET signaling pathway and androgen receptor deregulation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens.
Specimen part, Treatment
View Samples