Macrophages in tumor microenvironment have been characterized as M1- and M2-polarized subtypes. This study sought to investigate the effects of different macrophage subtypes on the biological behavior and global gene expression profiles of lung cancer cells. Expression microarray and bioinformatics analyses indicated that the different macrophage subtypes mainly regulated genes involved in cell cycle, cytoskeletal remodeling, coagulation, cell adhesion and apoptosis pathways in A549 cells, a pattern that correlated with the altered behavior of A549 cells observed after coculture with macrophage subtypes.
Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression.
Specimen part, Cell line
View SamplesIn order to identify patterns of gene expression associated with biological effects in THP-1 cells induced by F3, we performed a transcriptomic analysis on the THP-1 control and F3-treated THP-1 cells by oligonucleotide microarray
Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction.
Cell line
View SamplesWhereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic repression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are consistently marked by histone H3 K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET-domain protein G9a. We find that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression is unchanged at the domains analysed, in spite of a global loss of H3-K9 di-methylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is lost in the absence of G9, and this correlates with a loss of H3K9me2 and H3K9me3. These findings provide the first in vivo evidence for the involvement of a SET domain protein in imprinting and highlight the importance of histone lysine methylation rather than DNA methylation in the maintenance of imprinting in the trophoblast lineage.
G9a histone methyltransferase contributes to imprinting in the mouse placenta.
Age, Specimen part
View SamplesThe CLS1/CAF co-culture maintained the cancer stemness. This cancer stemness was lost when the CAF feeder cells were removed during passaging.
Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling.
Cell line
View SamplesThe mammary gland at early stages of pregnancy undergoes fast cell proliferation, yet the mechanism to ensure its genome integrity is largely unknown. Here we show that pregnancy enhances expression of genes involved in numerous pathways, including most genes encoding replisomes. In mouse mammary glands, replisome genes are positively regulated by estrogen/ERa signaling but negatively regulated by BRCA1. Upon DNA damage, BRCA1 deficiency markedly enhances DNA replication initiation. BRCA1 deficiency also preferably impairs DNA replication checkpoints mediated by ATR and CHK1 but not by WEE1, which inhibits DNA replication initiation through CDC7-MCM2 pathway and enables BRCA1-deficient cells to avoid further genomic instability. Thus, BRCA1 and WEE1 inhibit DNA replication initiation in a parallel manner to ensure genome stability for mammary gland development during pregnancy.
BRCA1 represses DNA replication initiation through antagonizing estrogen signaling and maintains genome stability in parallel with WEE1-MCM2 signaling during pregnancy.
No sample metadata fields
View SamplesWe report the high-throughput profiling of brain RNA from three Drosophila stains: dBRWD3PX2/+, dBRWD3PX2/PX2 and dBRWD3PX2/PX2, yemGS21861/GS21861. By obtaining over 50 million reads of sequence, WE compared the transcriptomic differences among the brains from these three stains. We found that the expression of 871 genes was significantly different between heterozygous control and homozygous dBRWD3 mutant brains (484 upregulated genes, 387 downregulated genes, p<0.05). Gene ontology (GO) analysis of the 871 genes revealed a broad spectrum of biological processes, ranging from synaptic activity to housekeeping metabolism subjective to dBRWD3 regulation. Among the 387 downregulated genes, the expression of 360 genes (92.8%) was increased in the dBRWD3, yem double mutant brains compared with dBRWD3 mutant. Among the 484 upregulated genes, the expression of 412 genes (85.1%) was decreased in the double mutant brains. These differential genes were evenly distributed on X chromosome and autosomes (149 on X, 178 on 2L, 154 on 2R, 166 on 3L, and 207 on 3R). These analyses indicate that dBRWD3 regulates gene expression in the brain mainly through the HIRA/YEM complex. Overall design: Examination of brain transcriptome in 3 Drosophila strains.
Intellectual disability-associated dBRWD3 regulates gene expression through inhibition of HIRA/YEM-mediated chromatin deposition of histone H3.3.
Specimen part, Cell line, Subject
View SamplesThe majority of the human genome is transcribed, yielding a rich repository of non-coding transcripts that are involved in a myriad of biological processes including cancer. However, how non-coding transcripts such as Long Non-coding RNAs (lncRNAs) function in prostate cancer is still unclear. In this study, we have identified a novel set of clinically relevant androgen-regulated lncRNAs in prostate cancer. Among this group, we found LINC00844 is a direct androgen regulated target that is actively transcribed in AR-dependent prostate cancer cells. In clinical analysis, the expression of LINC00844 is higher in normal prostate compared to malignant and metastatic prostate cancer samples and patients with low expression demonstrate poor prognosis and significantly increased biochemical recurrence suggesting LINC00844 may function in suppressing tumor progression and metastasis. From in-vitroloss-of-function studies, we showed LINC00844 prevents prostate cancer cell migration and invasion. Moreover, in gene expression studies we demonstrate LINC00844 functions in trans, affecting global androgen-regulated gene transcription. Mechanistically, we provide evidence to show LINC00844 is important in facilitating AR binding to the chromatin. Finally, we showed LINC00844 mediates its phenotypic effects in part by activating the expression of NDRG1, a crucial cancer metastasis suppressor. Collectively, our findings indicate LINC00844 is a novel coregulator of AR that plays an important role in the androgen transcriptional network and the development and progression of prostate cancer.
Novel lncRNA <i>LINC00844</i> Regulates Prostate Cancer Cell Migration and Invasion through AR Signaling.
Cell line, Treatment
View SamplesEpstein-Barr virus (EBV) Rta is a latent-lytic molecular switch evolutionarily conserved in all gamma-herpesviruses. In previous studies, doxycycline-inducible Rta was shown to potently produce an irreversible G1 arrest followed by cellular senescence in 293 cells. Here, we demonstrate that in this system the inducible Rta not only reactivates resident genome of EBV but also that of Kaposis sarcoma-associated herpesvirus (KSHV), to similar efficiency. However, Rta-induced senescence program was terminated by the robust viral lytic cycle replication that eventually caused cell death. Furthermore, prior to the abrupt expression of immediate-early protein (EBV BZLF1 or KSHV RTA), Rta simultaneously down-regulates cell cycle activators (c-Myc, CDK6, CCND2) and up-regulates senescence-related genes (p21, 14-3-3s). Since Rta is a viral immediate-early transcriptional activator, it is envisioned that during the initial stage of viral reactivation, Rta may engage to modulate the host transcriptome, to halt cell cycle progression, and to maintain an ideal environment for manufacturing infectious virions.
Epstein-Barr virus (EBV) Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells.
Specimen part, Cell line
View SamplesEBV Rta is a transcriptional activator that functions to disrupt EBV latency in cells of epithelial origin. This series of experiment is to identify host genes that are moduated by the expression of doxycycline-inducible EBV Rta in HEK293 cells. Designations for the pooled EBV Rta inducible cell lines is 293TetER; pooled luciferase inducible lines is 293TetLuc (control).
Epstein-Barr virus (EBV) Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells.
Specimen part, Cell line
View SamplesEBV Rta is a transcriptional activator that functions to disrupt EBV latency in cells of epithelial origin. This series of experiment is to identify host genes that are moduated by the expression of doxycycline-inducible EBV Rta in nasopharyngeal carcinoma cells. Designations for the two EBV Rta inducible cell lines are TW01TetER_cl7 (lower expression level) and TW01TetER_cl19 (higher expression level); for the control line is TW01Tet.
Epstein-Barr virus (EBV) Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells.
Specimen part, Cell line
View Samples