We identified the Hippo pathway and its effector YAP as a key pathway that controls stellate cell activation. YAP is a transcriptional co-activator and we found that it drives the earliest changes in gene expression during stellate cell activation.
The Hippo pathway effector YAP controls mouse hepatic stellate cell activation.
Specimen part, Treatment
View SamplesWe sequenced mRNA from 12 samples extracted from mouse amygdala tissue to generate the first amygdala-specific murine transcriptome for germ-free mice (GF), conventionally raised controls (CON) and germ-free mice that have been colonized with normal microbiota from postnatal day 21 (exGF). Overall design: Equal amounts of RNA from two to three animals were pooled to yield 4 samples per group (CON, GF, and exGF). Pairwise comparisons for CONvsGF, CONvsexGF, GFvsexGF were performed using DESeq2.
Microbes & neurodevelopment--Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala.
No sample metadata fields
View SamplesBreast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of SCID/Beige and NOD/SCID/IL2-receptor null (NSG) mice, under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (~23% and ~19%, respectively). Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 32 stably transplantable xenograft lines were established, representing unique 25 patients. Most tumors yielding xenografts were triple-negative (ER-PR-HER2+) (n=19). However, we established lines from three ER-PR-HER2+ tumors, one ER+PR-HER2-, one ER+PR+HER2- and one triple-positive (ER+PR+HER2+) tumor. Serially passaged xenografts show biological consistency with the tumor of origin, are phenotypic stability across multiple transplant generations at the histological, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses. Xenografts representing 12 patients, including two ER+ lines, showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource for preclinical studies investigating treatment response and metastasis.
A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models.
Specimen part
View SamplesThe transcriptomic changes induced in the human liver cell line HepG2 by 100M menadione, 200M TBH or 50M H2O2 after treatment for 0.5, 1, 2, 4, 6, 8 and 24h.
Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach.
Cell line
View SamplesThe lack of accurate in vitro assays for predicting in vivo toxicity of chemicals together with new legislations demanding replacement and reduction of animal testing has triggered the development of alternative methods. This study aimed at developing a transcriptomics-based in vitro prediction assay for in vivo genotoxicity. The transcriptomics changes induced in the human liver cell line HepG2 by 34 compounds after treatment for 12h, 24h and 48h were used for the selection of gene-sets that can discriminate between in vivo genotoxins (GTX) and in vivo non-genotoxins (NGTX). By combining publicly available results for these chemicals from standard in vitro genotoxicity studies with transcriptomics, we developed several prediction models. These models were validated by means of an additional set of 28 chemicals.
A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo.
Cell line, Time
View SamplesIt was the purpose to analyse the changes in gene expression which occur in the mouse small intestine from the pre-weaning to the post-weaning stage. The gene expression was accordingly followed from postnatal day 4 to postnatal day 32.
Cellular cross talk in the small intestinal mucosa: postnatal lymphocytic immigration elicits a specific epithelial transcriptional response.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells.
Specimen part, Treatment
View SamplesUnderstanding toxicity pathways of engineered nanomaterials (ENM) has recently been brought forward as a key step in 21st century ENM risk assessment. Molecular mechanisms linked to phenotypic end points is a step towards the development of toxicity tests based on key events, which may allow for grouping of ENM according to their mechanisms of action. This study identified molecular mechanisms underlying mitochondrial dysfunction in human bronchial epithelial BEAS 2B cells following exposure to one of the most studied multi-walled carbon nanotubes (MWCNTs; Mitsui-7). Asbestos was used as a positive control and a non-carcinogenic glass wool material was included as a negative fibre control. Decreased mitochondrial membrane potential (MMP) was observed for MWCNTs at a biologically relevant dose (0.25 g/cm2) and for asbestos at 2 g/cm2, but not for glass wool. Extensive temporal transcriptomic and microRNA expression analyses identified a 330-gene signature related to MWCNT- and asbestos-induced MMP. Fourty-nine of the MMP-associated genes showed highly similar expression patterns over time (six time points) and the majority was found to be regulated by two transcription factors strongly involved in mitochondrial homeostasis, APP and NRF1. In addition, four miRNAs were associated with MMP and one of them, miR-1275, was found to negatively correlate with a large part of the MMP-associated genes. Cellular processes such as gluconeogenesis, glucose metabolism, mitochondrial LC-fatty acid -oxidation and spindle microtubule function were enriched among the MMP-associated genes and miRNAs. These results are expected to be useful in the identification of key events in ENM-related toxicity pathways for the development of molecular screening techniques.
Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma.
Specimen part, Disease, Compound
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma.
Specimen part
View Samples