The main objective of this study is to identify the list of genes differentially expressed between infected with Leishmania braziliensis and non-infected macrophage cultures based on gene expression microarray profiling
Changes in Macrophage Gene Expression Associated with Leishmania (Viannia) braziliensis Infection.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy.
Cell line, Treatment
View SamplesPhotodynamic therapy (PDT) is a tumor treatment strategy that relies on the production of reactive oxygen species (ROS) in the tumor following local illumination. Although PDT has shown promising results in the treatment of non-resectable perihilar cholangiocarcinoma, it is still employed palliatively. In this study, tumor-comprising cells (i.e., cancer cells, endothelial cells, macrophages) were treated with the photosensitizer zinc phthalocyanine that was encapsulated in cationic liposomes (ZPCLs). Post-PDT survival pathways were studied following sublethal (50% lethal concentration (LC50)) and supralethal (LC90) PDT using a multi-omics approach. ZPCLs did not exhibit toxicity in any of the cells as assessed by toxicogenomics. Sublethal PDT induced survival signaling in perihilar cholangiocarcinoma (SK-ChA-1) cells via mainly hypoxia-inducible factor 1 (HIF-1)-, nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-B)-, activator protein 1 (AP-1)-, and heat shock factor (HSF)-mediated pathways. In contrast, supralethal PDT damage was associated with a dampened survival response. (Phospho)proteomic and metabolomic analysis showed that PDT-subjected SK-ChA-1 cells downregulated proteins associated with epidermal growth factor receptor (EGFR) signaling, particularly at LC50. PDT also affected various components of glycolysis and the tricarboxylic acid cycle as well as metabolites involved in redox signaling. In conclusion, sublethal PDT activates multiple pathways in tumor parenchymal and non-parenchymal cells that, in tumor cells, transcriptionally regulate cell survival, proliferation, energy metabolism, detoxification, inflammation/angiogenesis, and metastasis. Accordingly, sublethally afflicted tumor cells are a major therapeutic culprit. Our multi-omics analysis unveiled multiple druggable targets for pharmacological intervention.
Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy.
Cell line, Treatment
View SamplesRecently, it was described that mammalian cells are able to eliminate those with relative lower Myc levels in the epiblast through cell competition. We have described that cardiomyocytes during heart development are also able to complete eliminating cells with lower Myc levels. We have also shown that adult cardiomyocytes respond in the same way over long periods of time when cell competition is induced by overexpressing Myc in a mosaic fashion. We therefore have developed an RNASeq assay to further understand the mechanism of elimination of WT cells and the effect of mild Myc overexpression in cardiomyocytes. Overall design: Myc overexpression in a mosaic fashion in adult cardiomyocytes, 2 hearts were analyzed and two wild type littermates were used as controls
Cell competition promotes phenotypically silent cardiomyocyte replacement in the mammalian heart.
No sample metadata fields
View SamplesThe goal is to examine the transcriptome of ESCs with different Myc levels Overall design: In order to analyse the transcriptome, mESC population was sorted in 3 groups depending on Myc levels
Pluripotency Surveillance by Myc-Driven Competitive Elimination of Differentiating Cells.
Specimen part, Cell line, Subject
View SamplesThe goal of this study is to analyse the transcriptome of WT and Myc-overexpressing ESCs in iMOS T1-Myc mosaic cultures. Overall design: Homozygous iMOS T1-Myc ESC cultures (Claveria et al., 2013) were treated with 20µM 4-hydroxytamoxifen for 24 hours to generate a mosaic of cell populations containing two, one or no extra Myc and EYFP copies. 24 hours after tamoxifen removal, cells were sorted according to their EYFP expression levels and populations with two extra Myc and EYFP copies and with no extra Myc and EYFP copies were collected. Uninduced homozygous iMOS T1-Myc ESC cultures were also sorted and collected as a control. Three biological replicas were included for each condition.
Pluripotency Surveillance by Myc-Driven Competitive Elimination of Differentiating Cells.
Subject
View SamplesWe sequenced mRNA from 12 samples extracted from mouse amygdala tissue to generate the first amygdala-specific murine transcriptome for germ-free mice (GF), conventionally raised controls (CON) and germ-free mice that have been colonized with normal microbiota from postnatal day 21 (exGF). Overall design: Equal amounts of RNA from two to three animals were pooled to yield 4 samples per group (CON, GF, and exGF). Pairwise comparisons for CONvsGF, CONvsexGF, GFvsexGF were performed using DESeq2.
Microbes & neurodevelopment--Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala.
No sample metadata fields
View SamplesLymphoid committed CD34+lin-CD10+CD24- progenitors undergo a rebound at month 3 after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the absence of acute graft-versus-host disease (aGVHD). Here, we analyzed transcriptional programs of cell-sorted circulating lymphoid committed progenitors and CD34+Lin-CD10- non lymphoid progenitors in 11 allo-HSCT patients having (n=5) or not developed (n=6) grade 2 or 3 aGVHD and in 7 age-matched healthy donors. Major deregulated pathways included protein synthesis, energy production, cell cycle regulation and cytoskeleton organization. Notably, genes from protein biogenesis, translation machinery and cell cycle (CDK6) were over-expressed in progenitors from patients in the absence of aGVHD compared with healthy donors and patients affected by aGVHD. Expression of many genes from the mitochondrial oxidative phosphorylation metabolic pathway leading to ATP production were more specifically increased in lymphoid committed progenitors in absence of aGVHD. This was also the case for genes involved in cell mobilization such as those regulating Rho GTPases activity. In all, we show that circulating lymphoid committed progenitors undergo profound changes in metabolism favoring cell proliferation, energy production and cell mobilization after allo-HSCT in humans. These mechanisms are abolished in case of aGVHD or its treatment, indicating a persistent cell-intrinsic defect after exit from bone marrow.
Alterations of circulating lymphoid committed progenitor cellular metabolism after allogeneic stem cell transplantation in humans.
Disease, Disease stage, Subject
View SamplesPluripotent cell identity comprises a spectrum of cell states including naive and primed states, which are typified by mouse embryonic stem cells (ESCs) and epiblast-derived stem cells (EpiSCs), respectively. Here we define a pluripotent cell fate (PCF) gene signature based on RNA-seq analysis associated with naive and primed pluripotency acquisition, and identify Zfp281 as a key transcriptional regulator for primed pluripotency and also as a barrier to achieve the naive pluripotency of both mouse and human ESCs. Overall design: RNA sequencing analysis was performed in WT and Zfp281 null mouse embryonic stem cells under different pluripotent culture conditions. RNA-seq Experiments were carry out in two biological replciates. Genome binding/occupancy profiling of Zfp281 was performed in mouse embryonic stem cells by ChIP sequencing.
Zfp281 Coordinates Opposing Functions of Tet1 and Tet2 in Pluripotent States.
Cell line, Subject
View SamplesDendritic cells (DCs) are the sentinels of the mammalian immune system and they undergo a complex maturation process mediated by activation upon pathogen detection. Recent studies described the analysis of activated DCs by transcriptional profiling, but translation regulation was never taken in account. Therefore, the nature of the mRNAs being translated at various stages of DC activation was determined with the help of translational profiling, which is the sucrose gradient fractionation of polysomal-bound mRNAs combined to microarrays analysis. Total and polysomal-bound mRNA populations were compared in immature (0h) and LPS-stimulated (4h and 16h) human monocyte-derived DCs with the help of Affymetrix microarrays. Biostatistical analysis indicated that 296 mRNA molecules are translationally regulated during DC-activation. The most abundant biological process among the regulated mRNAs was protein biosynthesis, indicating the existence of a negative feedback loop regulating translation. Interestingly, a cluster of 17 ribosomal proteins were part of the regulated mRNAs, indicating that translation may be fine-tuned by particular components of the translational machinery. Our observations highlight the importance of translation regulation during the immune response, and may favour the identification of novel gene clusters or protein networks relevant for immunity. Our study also provides information on the possible absence of correlation between gene expression and real protein production in DCs.
Ribosomal protein mRNAs are translationally-regulated during human dendritic cells activation by LPS.
No sample metadata fields
View Samples