refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 528 results
Sort by

Filters

Technology

Platform

accession-icon SRP151925
Oligodendrocyte precursor differentiation and survival requires chromatin remodeling by Chd7 and Chd8 [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Oligodendrocyte precursor cells (OPCs) constitute the main proliferative cells in the adult brain, and deregulation of OPC proliferation-differentiation balance results in either glioma formation or defective adaptive (re)myelination. OPC differentiation requires significant genetic reprogramming implicating chromatin remodeling. Mounting evidence indicates that chromatin remodelers play important roles during normal development and their mutations are associated with neurodevelopmental defects, with CHD7 haploinsuficiency being the cause of CHARGE syndrome and CHD8 being one of the strongest Autism Spectrum Disorder (ASD) high-risk associated genes. Here, we report on uncharacterized functions of the chromatin remodelers Chd7 and Chd8 in OPCs. Their OPC-chromatin-binding profile combined with transcriptome and chromatin accessibility analyses of Chd7-deleted OPCs, demonstrates that Chd7 protects non-proliferative OPCs from apoptosis by chromatin-closing and transcriptional repression of p53. Furthermore, Chd7 controls OPC differentiation through chromatin-opening and transcriptional activation of key regulators, including Sox10, Nkx2.2 and Gpr17. Chd7 is however dispensable for oligodendrocyte stage progression, consistent with Chd8 compensatory function, as suggested by their common chromatin binding profiles and genetic interaction. Finally, CHD7 and CHD8 bind in OPCs to a majority of ASD-risk associated genes, suggesting an implication of oligodendrocyte lineage cells in ASD neurological defects. Our results thus offer new avenues to understand and modulate the CHD7 and CHD8 functions in normal development and disease. Overall design: RNA-seq from Chd7iKO and Control O4+ soted cells

Publication Title

Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE46583
Expression data from neuroblastoma of TH-MYCN/KI Alk mice
  • organism-icon Mus musculus
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Neuroblastoma is an embryonal neoplasm that remains of dramatic prognosis in its aggressive forms. Activating mutations of the ALK tyrosine kinase receptor have been identified in sporadic and familial cases of this cancer. We generated knock-in mice carrying the two most frequent Alk mutations observed in neuroblastoma patients. We used microarrays to detail the global programme of gene expression underlying the impact of ALK mutations on neuroblastoma formation in a MYCN amplified background.

Publication Title

Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20405
HDAC and aminopeptidase inhibitor treatment of myeloma cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

H929 human myeloma cells were exposed to aminopeptidase inhibitor (CHR-2797), HDAC inhibitor (CHR-3996), or a combinaion of the two agents, for 24 hours.

Publication Title

The combination of HDAC and aminopeptidase inhibitors is highly synergistic in myeloma and leads to disruption of the NFκB signalling pathway.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP072468
RNA-seq analysis of testis transcripts from Wt and Trf2-/- mice [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

TRF2 is a paralogue of TATA-box binding protein (TBP) with highest expression in testis. Although Trf2 inactivation in mice leads to arrested spermatogenesis, there is no direct evidence that Trf2 is recruited to chromatin to directly regulate gene expression. We used genetically modified mice where endogenous Trf2 has been modified to carry a TAP-TAG to perform ChIP-reChIP followed by deep sequencing. We found that Trf2 is recruited to all active promoters as a subunit of TFIIA/ALF complex together with TBP. To assess the effect of Trf2 inactivation on gene expression we performed RNA-seq on WT and Trf2-/- testes at 21 days of age when haploid cell gene expression is activated. Overall design: The testes from three 21 day old WT and three Trf2-/- males were taken to prepare total RNAs for deep sequencing.

Publication Title

TRF2 is recruited to the pre-initiation complex as a testis-specific subunit of TFIIA/ALF to promote haploid cell gene expression.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE11843
RNA species bound by deiminated and non-deiminated MA-Brent-1 (bhatt-affy-mouse-581641)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We have identified loss of deiminated MA-Brent-1 (an RNA and export binding protein) in the retinal ganglion cells (RGCs) in multiple sclerosis and in glaucoma eyes compared to normal controls. Deimination refers to posttranslational modification of protein bound arginine (not free arginine) in citrulline. Our preliminary studies suggest binding of different repertoire of RNA by non-deiminated and deiminated MA-Brent-1. In vitro, in neurites of cultured RGCs and hippocampal neurons, the select mRNA translation is enhanced by addition of deiminated but not non-deiminated MA-Brent-1. These observations suggest that lack of deiminated MA-Brent-1 has consequences for protein synthesis, remodeling and plasticity of RGCs/neurons. Identification of RNA species bound by deiminated and non-deiminated MA-Brent-1 will enable us there further verification and determining the role that deimination plays in biological function of MA-Brent-1 in multiple sclerosis and glaucoma. To summarize identification of RNA species bound by deiminated and non deiminated MA-Brent-1 will enable us to gain further insight into role of deimination in the overall disease process.

Publication Title

The role of deimination in ATP5b mRNA transport in a transgenic mouse model of multiple sclerosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25076
Hypothalamic expression differences between hypertensive BPH/2J and normotensive BPN/3J mouse strains
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Identification of hypothalamic genes whose expression differs between high blood pressure (BPH/2J) and normal blood pressure (BPN/3J) Schlager mouse strains at age 6 weeks (young) and 26 weeks (mature) using Affymetrix GeneChip Mouse Gene 1.0 ST Arrays.

Publication Title

Global identification of the genes and pathways differentially expressed in hypothalamus in early and established neurogenic hypertension.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE26007
Hypothalamic expression differences between hypertensive BPH/2J during circadian variations of blood pressure
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Identification of hypothalamic genes whose expression differs between active (peak of blood pressure) and inactive periods in the high blood pressure (BPH/2J) Schlager mouse, adjusted by their age- and activity-matched normal blood pressure (BPN/3J) controls using Affymetrix GeneChip Mouse Gene 1.0 ST Arrays.

Publication Title

Genes influencing circadian differences in blood pressure in hypertensive mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP140823
Characterizing the transcriptomic profile of the cortex within the long-term window of ischemic tolerance mediated by resveratrol preconditioning
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To identify novel genes and adaptations induced by resveratrol preconditioning that could promote long-term cerebral ischemic tolerance. After analyzing the results, we identified only 155 differentially expressed genes among which the majority of genes consisting of 126 were downregulated and only 29 genes were upregulated. The downregulated genes clustered into biological processes involved in regulating the memebrane potential, gene expression regulation, and neurotrasmitter transport secrection. While the upregulated gene included immediate early genes and genes involved in antioxidant defense. Overall design: Mice were subject to an intraperitoneal injection of vehicle or resveratrol (10mg/kg) (n=3 per group), two weeks later their cerebral cortex was collected, RNA was extracted and then sent for sequencing

Publication Title

Resveratrol Preconditioning Induces Genomic and Metabolic Adaptations within the Long-Term Window of Cerebral Ischemic Tolerance Leading to Bioenergetic Efficiency.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP041011
Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Neonates often generate incomplete immunity against intracellular pathogens, although the mechanism of this defect is poorly understood. An important question is whether the impaired development of memory CD8+ T cells in neonates is due to an immature priming environment or lymphocyte-intrinsic defects. Here we show that neonatal and adult CD8+ T cells adopted different fates when responding to equal amounts of stimulation in the same host. While adult CD8+ T cells differentiated into a heterogeneous pool of effector and memory cells, neonatal CD8+ T cells preferentially gave rise to short-lived effector cells and exhibited a distinct gene expression profile. Surprisingly, impaired neonatal memory formation was not due to a lack of responsiveness, but instead because neonatal CD8+ T cells expanded more rapidly than adult cells and quickly became terminally differentiated. Collectively, these findings demonstrate that neonatal CD8+ T cells exhibit an imbalance in effector and memory CD8+ T cell differentiation, which impairs the formation of memory CD8+ T cells in early life Overall design: mRNA profiles of effector CD8+ T cells from neonatal and adult mice

Publication Title

Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP110682
Id proteins suppress E2A-driven iNKT cell development prior to TCR selection [RNA-seq_new]
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Id proteins have been shown to promote the differentiation of conventional aß and ?dT cells, and to suppress the expansion of invariant Natural Killer T (iNKT) cells and innate-like ?dNKT within their respective cell lineages. However, it remains to be determined whether Id proteins regulate lineage specification in developing T cells that give rise to these distinct cell fates. Here we report that in the absence of Id2 and Id3 proteins, E2A prematurely activates genes critical for the iNKT cell lineage prior to TCR expression. Lack of Id proteins also promotes a biased TCR rearrangement in favor of iNKT cell fate prior to selection at the CD4+CD8+ double positive (DP) stage. Enhanced iNKT development in Id3-deficient mice lacking ?dNKT cells suggests that Id3 regulates the lineage competition between these populations. RNA-Seq analysis establishes E2A as the transcriptional regulator of both iNKT and ?dNKT development. In the absence of pre-TCR signaling, Id2/Id3 deletion gives rise to a large population of iNKT cells and a unique innate-like DP population, despite the block in conventional aß T cell development. The transcriptional profile of these unique DP cells reflects enrichment of innate-like signature genes, including PLZF (Zbtb16) and Granzyme A (Gzma). Results from these genetic models and genome-wide analyses suggest that Id proteins suppress E2A-driven innate-like T cell programs prior to TCR selection to enforce predominance of conventional T cells. Overall design: The RNA-Seq experiment included WT DP, pTaKO DP, L-DKO DP and L-DKO pTaKO (abbreviated as LP) DP cells (where L-DKO refers to mice deficient in both Id2/Id3). Each replicate represents cells from a single mouse. One pTaKO DP (#1) sample was removed from analysis due to low quality of sequencing. All mice were B6/129 hybrids and littermates.

Publication Title

Id Proteins Suppress E2A-Driven Invariant Natural Killer T Cell Development prior to TCR Selection.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact