Identification of hypothalamic genes whose expression differs between high blood pressure (BPH/2J) and normal blood pressure (BPN/3J) Schlager mouse strains at age 6 weeks (young) and 26 weeks (mature) using Affymetrix GeneChip Mouse Gene 1.0 ST Arrays.
Global identification of the genes and pathways differentially expressed in hypothalamus in early and established neurogenic hypertension.
Sex, Age, Specimen part
View SamplesIdentification of hypothalamic genes whose expression differs between active (peak of blood pressure) and inactive periods in the high blood pressure (BPH/2J) Schlager mouse, adjusted by their age- and activity-matched normal blood pressure (BPN/3J) controls using Affymetrix GeneChip Mouse Gene 1.0 ST Arrays.
Genes influencing circadian differences in blood pressure in hypertensive mice.
Age, Specimen part
View SamplesH929 human myeloma cells were exposed to aminopeptidase inhibitor (CHR-2797), HDAC inhibitor (CHR-3996), or a combinaion of the two agents, for 24 hours.
The combination of HDAC and aminopeptidase inhibitors is highly synergistic in myeloma and leads to disruption of the NFκB signalling pathway.
Specimen part, Cell line, Treatment
View SamplesTRF2 is a paralogue of TATA-box binding protein (TBP) with highest expression in testis. Although Trf2 inactivation in mice leads to arrested spermatogenesis, there is no direct evidence that Trf2 is recruited to chromatin to directly regulate gene expression. We used genetically modified mice where endogenous Trf2 has been modified to carry a TAP-TAG to perform ChIP-reChIP followed by deep sequencing. We found that Trf2 is recruited to all active promoters as a subunit of TFIIA/ALF complex together with TBP. To assess the effect of Trf2 inactivation on gene expression we performed RNA-seq on WT and Trf2-/- testes at 21 days of age when haploid cell gene expression is activated. Overall design: The testes from three 21 day old WT and three Trf2-/- males were taken to prepare total RNAs for deep sequencing.
TRF2 is recruited to the pre-initiation complex as a testis-specific subunit of TFIIA/ALF to promote haploid cell gene expression.
Specimen part, Subject
View SamplesWe have identified loss of deiminated MA-Brent-1 (an RNA and export binding protein) in the retinal ganglion cells (RGCs) in multiple sclerosis and in glaucoma eyes compared to normal controls. Deimination refers to posttranslational modification of protein bound arginine (not free arginine) in citrulline. Our preliminary studies suggest binding of different repertoire of RNA by non-deiminated and deiminated MA-Brent-1. In vitro, in neurites of cultured RGCs and hippocampal neurons, the select mRNA translation is enhanced by addition of deiminated but not non-deiminated MA-Brent-1. These observations suggest that lack of deiminated MA-Brent-1 has consequences for protein synthesis, remodeling and plasticity of RGCs/neurons. Identification of RNA species bound by deiminated and non-deiminated MA-Brent-1 will enable us there further verification and determining the role that deimination plays in biological function of MA-Brent-1 in multiple sclerosis and glaucoma. To summarize identification of RNA species bound by deiminated and non deiminated MA-Brent-1 will enable us to gain further insight into role of deimination in the overall disease process.
The role of deimination in ATP5b mRNA transport in a transgenic mouse model of multiple sclerosis.
No sample metadata fields
View SamplesTo identify novel genes and adaptations induced by resveratrol preconditioning that could promote long-term cerebral ischemic tolerance. After analyzing the results, we identified only 155 differentially expressed genes among which the majority of genes consisting of 126 were downregulated and only 29 genes were upregulated. The downregulated genes clustered into biological processes involved in regulating the memebrane potential, gene expression regulation, and neurotrasmitter transport secrection. While the upregulated gene included immediate early genes and genes involved in antioxidant defense. Overall design: Mice were subject to an intraperitoneal injection of vehicle or resveratrol (10mg/kg) (n=3 per group), two weeks later their cerebral cortex was collected, RNA was extracted and then sent for sequencing
Resveratrol Preconditioning Induces Genomic and Metabolic Adaptations within the Long-Term Window of Cerebral Ischemic Tolerance Leading to Bioenergetic Efficiency.
Specimen part, Cell line, Subject
View SamplesNeonates often generate incomplete immunity against intracellular pathogens, although the mechanism of this defect is poorly understood. An important question is whether the impaired development of memory CD8+ T cells in neonates is due to an immature priming environment or lymphocyte-intrinsic defects. Here we show that neonatal and adult CD8+ T cells adopted different fates when responding to equal amounts of stimulation in the same host. While adult CD8+ T cells differentiated into a heterogeneous pool of effector and memory cells, neonatal CD8+ T cells preferentially gave rise to short-lived effector cells and exhibited a distinct gene expression profile. Surprisingly, impaired neonatal memory formation was not due to a lack of responsiveness, but instead because neonatal CD8+ T cells expanded more rapidly than adult cells and quickly became terminally differentiated. Collectively, these findings demonstrate that neonatal CD8+ T cells exhibit an imbalance in effector and memory CD8+ T cell differentiation, which impairs the formation of memory CD8+ T cells in early life Overall design: mRNA profiles of effector CD8+ T cells from neonatal and adult mice
Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life.
No sample metadata fields
View SamplesId proteins have been shown to promote the differentiation of conventional aß and ?dT cells, and to suppress the expansion of invariant Natural Killer T (iNKT) cells and innate-like ?dNKT within their respective cell lineages. However, it remains to be determined whether Id proteins regulate lineage specification in developing T cells that give rise to these distinct cell fates. Here we report that in the absence of Id2 and Id3 proteins, E2A prematurely activates genes critical for the iNKT cell lineage prior to TCR expression. Lack of Id proteins also promotes a biased TCR rearrangement in favor of iNKT cell fate prior to selection at the CD4+CD8+ double positive (DP) stage. Enhanced iNKT development in Id3-deficient mice lacking ?dNKT cells suggests that Id3 regulates the lineage competition between these populations. RNA-Seq analysis establishes E2A as the transcriptional regulator of both iNKT and ?dNKT development. In the absence of pre-TCR signaling, Id2/Id3 deletion gives rise to a large population of iNKT cells and a unique innate-like DP population, despite the block in conventional aß T cell development. The transcriptional profile of these unique DP cells reflects enrichment of innate-like signature genes, including PLZF (Zbtb16) and Granzyme A (Gzma). Results from these genetic models and genome-wide analyses suggest that Id proteins suppress E2A-driven innate-like T cell programs prior to TCR selection to enforce predominance of conventional T cells. Overall design: The RNA-Seq experiment included WT DP, pTaKO DP, L-DKO DP and L-DKO pTaKO (abbreviated as LP) DP cells (where L-DKO refers to mice deficient in both Id2/Id3). Each replicate represents cells from a single mouse. One pTaKO DP (#1) sample was removed from analysis due to low quality of sequencing. All mice were B6/129 hybrids and littermates.
Id Proteins Suppress E2A-Driven Invariant Natural Killer T Cell Development prior to TCR Selection.
Specimen part, Subject
View SamplesIn comparison to MØs, MEMs have increased expression of the inhibitory molecules PD-L1, PD-L2, in addition to markers of alternatively activated macrophages: CD206 and CD163. RNA-Seq analysis of MEMs, as compared to MØs, show a distinct gene expression profile that positively correlates with multiple pathways important in tissue repair. MEMs also show increased expression of IL-6, TGF-ß, Arginase-1, CD73, and decreased expression of IL-12 and TNF-a. We show that IL-6 secretion is controlled in part by the COX-2, arginase and JAK1/STAT1 pathway. When tested in vivo, we show that human MEMs significantly enhance survival from lethal GVHD, and improve survival of mice from radiation injury. Overall design: Human macrophages were isolated from PBMCs and then exposed to MSCs. RNA was isolated then subjected to RNA-Seq.
Human Mesenchymal Stem Cell-Educated Macrophages Are a Distinct High IL-6-Producing Subset that Confer Protection in Graft-versus-Host-Disease and Radiation Injury Models.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Id2 Collaborates with Id3 To Suppress Invariant NKT and Innate-like Tumors.
Specimen part
View Samples