Misregulated alternative splicing appears to be a major factor in the pathogenesis of myotonic dystrophy. The present study was done to further explore alternative splicing in this condition by doing exon-level analysis of mRNA from skeletal muscle of 8 subjects with type 1 myotonic dystrophy, 7 subjects with type 2 myotonic dystrophy, 8 disease controls (subjects with facioscapulohumeral muscular dystrophy), and 8 healthy controls . The ratios of signals from the various exons of a gene provided an index of altered exon inclusion/exclusion that was independent of the overall expression of that gene. There were numerous transcripts for which there was evidence of abnormal alternative splicing in subjects with myotonic dystrophy. For many of these transcripts, the abnormal splicing was confirmed by an independent RT-PCR approach.
Splicing biomarkers of disease severity in myotonic dystrophy.
Specimen part
View SamplesWe demonstrate that the G protein Gi3 is the cellular target of the adenosine A3 receptor (A3R). By using a cell permeable peptide comprising the C-terminal end of Gi3 fused to an importation sequence (ALL1) as a selective inhibitor of Gi3 signaling, we show that by coupling to Gi3, the A3R stimulates multiple signaling pathways in human mast cells, leading to upregulation of cytokines, chemokines and growth factors.Following contact with activated T cell membranes, endogenous adenosine binds to and activates the A3R, resulting in Gi3-mediated signaling. Specifically, the majority of ERK1/2 signaling initiated by contact with activated T cell membranes, is mediated by Gi3, giving rise to ALL1-inhibitable cellular responses. These results unveil the physiological GPCR that couples to Gi3 and establish the important role played by this G-protein in inflammatory conditions that involve adenosine-activated mast cells.
Activation of mast cells by trimeric G protein Gi3; coupling to the A3 adenosine receptor directly and upon T cell contact.
Cell line
View SamplesWe analyzed the transcriptome of dormant and after-ripened imbibed seeds of the Arabidopsis accession Cape verde Islands.
Dormant and after-Ripened Arabidopsis thaliana Seeds are Distinguished by Early Transcriptional Differences in the Imbibed State.
Specimen part, Time
View SamplesFoxp1/4 transcription factors are conserved transcriptional repressors expressed in overlapping patterns during lung development as well as in the adult lung. However, the role of Foxp1/4 in development and homeostasis of the pseudostratified epithelium of the proximal airways and trachea is unknown.
Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2.
Specimen part
View SamplesA doxycycline-inducible system was used to induce PU.1 expression in cultured myeloid cell lines. The parent cell line used was BN (Kamath et al., Leukemia 22:1214-1225, 2008).
PU.1 promotes cell cycle exit in the murine myeloid lineage associated with downregulation of E2F1.
Specimen part, Treatment
View SamplesSON is a large Ser/Arg (SR)-related protein localized in nuclear speckles. SON siRNA causes defects in mitotic progression and genome instability. We used microarrays to detail the pattern of gene expression after SON knockdown.
SON controls cell-cycle progression by coordinated regulation of RNA splicing.
Specimen part
View SamplesMaster regulatory genes require stable silencing by the Polycomb-Group (PcG) to prevent improper expression during differentiation and development. Some PcG proteins covalently modify histones, which contributes to heritable repression. The role for other effects on chromatin structure is less understood. We characterized the organization of PcG target genes in mouse ES cells and neural progenitors using high-resolution 5C technology and super-resolution microscopy. The genomic loci of repressed PcG target genes formed discrete, small domains of tight interaction that corresponded to locations bound by canonical Polycomb Repressive Complex 1 (PRC1). These domains changed during differentiation as PRC1 binding changed. Their formation depended upon the Polyhomeotic component of canonical PRC1, and occurred independently of PRC1-catalyzed ubiquitylation. PRC1 domains differ from topologically associating domains in numerous aspects . These domains have the potential to play a key role in transmitting epigenetic silencing of PcG targets by linking PRC1 to formation of a repressive higher order structure. Overall design: RNA-Seq was performed to compare gene expression of in vitro derived NPC and Phc1 knock-out mESC with wild type ESC. Experiments were performed in dupicates. 50base single end sequencing was performed on Illumina HiSeq2000. Reference genome is mm9.
Polycomb Repressive Complex 1 Generates Discrete Compacted Domains that Change during Differentiation.
Specimen part, Cell line, Subject
View SamplesPseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7,488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101.
Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens.
Specimen part, Treatment
View SamplesWe analysed the transcriptome of dry seeds (the end product of seed maturation) of three genotypes with different DOG1 expression levels. These included the WT Ler (low DOG1 expression), the near isogenic line NILDOG1-Cvi (strong DOG1 expression) and the non-dormant dog1-1 mutant (absence of DOG1 expression). NILDOG1-Cvi is the Ler WT containing an introgression of the Cvi accession on chromosome 5, which includes the DOG1 gene (Bentsink et al., 2006). The dog1-1 mutant is in the NILDOG1-Cvi genetic background.
The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development.
Specimen part
View SamplesThe skin interfollicular epidermis (IFE) is the first barrier against the external environment and its maintenance is critical for survival. Two seemingly opposite theories have been proposed to explain IFE homeostasis. One posits that IFE is maintained by a long-lived slow-cycling stem cell (SC) population that give rise to short-lived transit-amplifying (TA) cell progeny, while the other suggests that homeostasis is achieved by a single committed progenitor (CP) that balances stochastic fate. Here, we probed the cellular heterogeneity within the IFE using two different inducible CREER targeting IFE progenitors. Quantitative analysis of clonal fate data and proliferation dynamics demonstrate the existence of two distinct proliferative cell compartments composed of slow-cycling SC and CP, both of which undergo population asymmetric self-renewal. However, following wounding, only SCs contribute substantially to the repair and long-term regeneration of the tissue, while CP cells make a minimal and transient contribution.
Distinct contribution of stem and progenitor cells to epidermal maintenance.
Specimen part
View Samples