refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 31 results
Sort by

Filters

Technology

Platform

accession-icon GSE55724
Gene expression profiles regulated by PLD1-E2F1 axis in two Wnt-relevant colon cancer cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

1. To identify potential effectors responsible for anti-tumorigenesis by targeting PLD1, we performed microarray in two Wnt-relevant colon cancer cells and analyzed transcriptional profile of genes that were differently expressed by inhibition and knockdown of PLD1

Publication Title

Targeting phospholipase D1 attenuates intestinal tumorigenesis by controlling β-catenin signaling in cancer-initiating cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE16091
Gene expression profiles of human osteosarcoma, set2
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Pulmonary metastasis continues to be the most common cause of death in osteosarcoma. Indeed, the 5-year survival for newly diagnosed osteosarcoma patients has not significantly changed in over 20 years. Further understanding of the mechanisms of metastasis and resistance for this aggressive pediatric cancer is necessary. Pet dogs naturally develop osteosarcoma providing a novel opportunity to model metastasis development and progression. Given the accelerated biology of canine osteosarcoma, we hypothesized that a direct comparison of canine and pediatric osteosarcoma expression profiles may help identify novel metastasis-associated tumor targets that have been missed through the study of the human cancer alone. Collectively, these data support the strong similarities between human and canine osteosarcoma and underline the opportunities provided by a comparative oncology approach as a means to improve our understanding of cancer biology and therapy.

Publication Title

Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16088
Gene expression profiles of human osteosarcoma
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Pulmonary metastasis continues to be the most common cause of death in osteosarcoma. Indeed, the 5-year survival for newly diagnosed osteosarcoma patients has not significantly changed in over 20 years. Further understanding of the mechanisms of metastasis and resistance for this aggressive pediatric cancer is necessary. Pet dogs naturally develop osteosarcoma providing a novel opportunity to model metastasis development and progression. Given the accelerated biology of canine osteosarcoma, we hypothesized that a direct comparison of canine and pediatric osteosarcoma expression profiles may help identify novel metastasis-associated tumor targets that have been missed through the study of the human cancer alone. Collectively, these data support the strong similarities between human and canine osteosarcoma and underline the opportunities provided by a comparative oncology approach as a means to improve our understanding of cancer biology and therapy.

Publication Title

Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line

View Samples
accession-icon GSE16102
Gene expression profiles of canine and human osteosarcoma
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Pulmonary metastasis continues to be the most common cause of death in osteosarcoma. Indeed, the 5-year survival for newly diagnosed osteosarcoma patients has not significantly changed in over 20 years. Further understanding of the mechanisms of metastasis and resistance for this aggressive pediatric cancer is necessary. Pet dogs naturally develop osteosarcoma providing a novel opportunity to model metastasis development and progression. Given the accelerated biology of canine osteosarcoma, we hypothesized that a direct comparison of canine and pediatric osteosarcoma expression profiles may help identify novel metastasis-associated tumor targets that have been missed through the study of the human cancer alone. Collectively, these data support the strong similarities between human and canine osteosarcoma and underline the opportunities provided by a comparative oncology approach as a means to improve our understanding of cancer biology and therapy.

Publication Title

Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE93579
Gene expression and alternative splicing profiles of BEZ235 treated Ewing Sarcoma cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

TC71 cells treated either with BEZ235 or DMSO

Publication Title

hnRNPM guides an alternative splicing program in response to inhibition of the PI3K/AKT/mTOR pathway in Ewing sarcoma cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7875
Deletion of PKBalpha/Akt1 affects thymic development
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The thymus constitutes the primary lymphoid organ for the majority of T cells. The phosphatidyl-inositol 3 kinase (PI3K) signaling pathway is involved in lymphoid development. Defects in single components of this pathway prevent thymocytes from progressing beyond early T cell developmental stages. Protein kinase B (PKB) is the main effector of the PI3K pathway. To determine whether PKB mediates PI3K signaling in early T cell development, we characterized PKB knockout thymi. Our results reveal a significant thymic hypocellularity in PKBalpha-/- neonates and an accumulation of early thymocyte subsets in PKBalpha-/- adult mice. The latter finding is specifically attributed to the lack of PKBalpha within the lymphoid component of the thymus. Microarray analyses show that the absence of PKBalpha in early thymocyte subsets modifies the expression of genes known to be involved in pre-TCR signaling, in T cell activation, and in the transduction of interferon-mediated signals. This report highlights the specific requirements of PKBalpha for thymic development.

Publication Title

Deletion of PKBalpha/Akt1 affects thymic development.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE36078
Virus-misplaced host protein activates innate immunity
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Discrimination between self vs. non-self and adequate response to infection and tissue damage are fundamental functions of the immune system. The rapid and global spread of known and emerging viruses is a testament that the timely detection of viral pathogens that reproduce within host cells, presents a formidable challenge to the immune system. To gain access to a proper reproductive niche, many pathogens travel via the host vasculature and therefore become exposed to humoral factors of the innate immune system. Although a cascade of coagulation factors plays a fundamental role in host defense for living fossils such as horseshoe crabs (Xiphosurida spp), the role of the coagulation system in activation of innate responses to pathogens in higher organisms remains unclear. When human type C adenovirus (HAdv) enters the circulation, 240 copies of coagulation factor X (FX) bind to the virus particle with picomolar affinity. Here, using molecular dynamics flexible fitting (MDFF) and high resolution cryo-electron microscopy (cryo-EM), we defined the interface between the HAdv5 hexon protein and FX at pseudo-atomic level. Based on this structural data, we introduced a single amino acid substitution, T424A, in the hexon that completely abrogated FX interaction with the virus. In vivo genome-wide transcriptional profiling revealed that FX-binding-ablated virus failed to activate a distinct network of the early response genes, whose expression depends on transcription factor NFKB1. Deconvolution of the signaling network responsible for early gene activation showed that the FX-HAdv complex triggers MyD88/TRIF/TRAF6 signaling upon activation of toll-like receptor 4 (TLR4) that serves as a principal sensor of FX-virus complex in vivo. Our study implicates host factor decoration of the virus as a mechanism to trigger innate immune sensor that respond to a misplacement of coagulation FX from the blood into intracellular macrophage compartments upon virus entry into the cell. Our results further the mounting evidence of evolutionary conservation between the coagulation system and innate immunity.

Publication Title

Coagulation factor X activates innate immunity to human species C adenovirus.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE13901
Treatment of human monocyte-derived dendritic cells with Saccaromyces cerevisiae in exponential growth phase
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

In vitro experiment of stimulation of monocyte-derived dendritic cells with Saccaromyces cerevisiae in exponential growth phase. This experiment was performed to verify the comparability of microarray

Publication Title

Using pathway signatures as means of identifying similarities among microarray experiments.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP076879
JQ1 +/- Vemurafenib in BRAF mutant melanoma (A375)
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The combination of JQ1 and Vemurafenib acted synergistically in BRAF-mutant cell lines, resulting in marked apoptosis in vitro, with up-regulation of pro-apoptotic proteins. In vivo, combination treatment suppressed tumor growth and significantly improved survival compared to either drug alone. RNA sequencing of tumor tissues revealed almost four thousand genes that were uniquely modulated by the combination, with several anti-apoptotic genes significantly down-regulated. Overall design: 16 samples analyzed from 8 mice (each mouse was bearing two tumors, one on each flank) in 4 treatment groups (control, vemurafenib alone, JQ1 alone, JQ1+vemurafenib)

Publication Title

BET and BRAF inhibitors act synergistically against BRAF-mutant melanoma.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE51020
Gene expression profiling of MYC-amplified medulloblastoma cell lines treated by JQ1, a BET bromodomain inhibitor
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

MYC-amplified medulloblastomas are highly lethal tumors. BET bromodomain inhibition was recently described to downregulate MYC-associated transcriptional activity in various cancer subtypes. To investigate whether JQ1, a BET bromodomain inhibitor is downregulation MYC and MYC-associated transcriptional activity, we performed global gene expression profiling of five medulloblastomas MYC-amplified patient-derived cell lines treated by JQ1 and the inactive form of JQ1.

Publication Title

BET bromodomain inhibition of MYC-amplified medulloblastoma.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact