A fundamental question in developmental biology is whether there are mechanisms to detect stem cells with mutations that, although not adversely affecting viability, would compromise their ability to contribute to further development. Here, we show that cell competition is a mechanism regulating the fitness of embryonic stem cells (ESCs). We find that ESCs displaying defective bone morphogenetic protein signaling or defective autophagy or that are tetraploid are eliminated at the onset of differentiation by wild-type cells. This elimination occurs in an apoptosis-dependent manner and is mediated by secreted factors. Furthermore, during this process, we find that establishment of differential c-Myc levels is critical and that c-Myc overexpression is sufficient to induce competitive behavior in ESCs. Cell competition is, therefore, a process that allows recognition and elimination of defective cells during the early stages of development and is likely to play important roles in tissue homeostasis and stem cell maintenance.
Competitive interactions eliminate unfit embryonic stem cells at the onset of differentiation.
Specimen part
View SamplesA fundamental question in developmental biology is whether there are mechanisms to detect stem cells with mutations that although do not adversely affect their viability, would compromise their ability to contribute to further development. Here we show that cell competition is a novel mechanism regulating the fitness of embryonic stem cells (ESCs). We find that ESCs displaying defective BMP signalling, defective autophagy or are tetraploid are eliminated at the onset of differentiation by wild-type cells. This elimination occurs in an apoptotic dependent manner and is mediated by secreted factors. Furthermore, during this process we find that establishment of differential cMyc levels is critical and that cMyc over-expression is sufficient to induce competitive behaviour in ESCs. Cell competition is therefore a process that allows recognition and elimination of defective cells during the early stages of development and is likely to play important roles in tissue homeostasis and stem cell maintenance.
Competitive interactions eliminate unfit embryonic stem cells at the onset of differentiation.
Specimen part
View SamplesTestosterone production by Leydig cells is a tightly regulated process requiring synchronized expression of several steroidogenic genes by numerous transcription factors. Myocyte enhancer factor 2 (MEF2) is a transcription factor recently identified in somatic cells of the male gonad. In other tissues, MEF2 is an essential regulator of organogenesis and cell differentiation. So far in the testis, MEF2 was found to regulate Leydig cell steroidogenesis by controlling Nr4a1 and Star gene expression. To expand our understanding of the role of MEF2 in Leydig cells, we performed microarray analyses of MA-10 Leydig cells depleted in MEF2 and results were analyzed using the Partek and IPA softwares. Several genes were differentially expressed in MEF2-depleted Leydig cells and 15 were validated by qPCR. A large number of these genes are known to be involved in fertility, gonad morphology and steroidogenesis and include Pde8a, Por, Ahr, Bmal1, Cyp1a1, Cyp1b1, Map2k1, Tsc22d3, Nr0b2, Smad4, and Star, which were all downregulated in the absence of MEF2. In silico analyses revealed the presence of MEF2 binding sites within the first 2 kb upstream the transcription start site of the Por, Bmal1, and Nr0b2 promoters, which suggests a direct regulation by MEF2. Using transient transfections in MA-10 Leydig cells, siRNA knockdown, and a MEF2-Engrailed dominant negative, we found that MEF2 activates the Por, Bmal1 and Nr0b2 promoters and that this requires an intact MEF2 element. Our results identify novel target genes for MEF2 and define MEF2 as an important regulator of Leydig cell function and male reproduction.
Novel Targets for the Transcription Factors MEF2 in MA-10 Leydig Cells.
Specimen part, Cell line
View Samples