Tumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by non-epithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin (IL)-33 as an epithelial cell-derived regulator of stromal cell activation and mediator of intestinal polyposis. IL-33 expression was elevated in the tumors and serum of colorectal cancer patients and induced in the adenomatous polyps of ApcMin/+ mutant mice. Genetic and antibody suppression of IL-33 signaling in ApcMin/+ mice inhibited proliferation, induced apoptosis, and suppressed angiogenesis in polyps, which reduced both tumor number and size. In ApcMin/+ polyps, IL-33 expression localized to tumor epithelial cells and expression of the IL-33 receptor, IL1RL1, associated with two stromal cell types, namely subepithelial myofibroblasts (SEMFs) and mast cells, whose activation was previously associated with polyposis. In vitro IL-33 stimulation of human SEMFs induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in ApcMin/+ polyps and expression of mast cell-derived proteases and cytokines known to promote polyposis. Together, our results suggest that IL-33 is a tumor epithelial cell-derived paracrine signal that promotes polyposis through the coordinated activation of stromal cells and the formation of a reactive stroma microenvironment. Overall design: Six T-75 flasks of CCD-18Co cells were grown to 80% confluency; three were treated with rhIL-33, three were given vehicle control; cells were trypsinized and split in two--half of each flask used for sequencing and half for qPCR validation post-sequencing
IL-33 activates tumor stroma to promote intestinal polyposis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice.
Specimen part
View SamplesThe transcription factor Nrf2 (gene symbol Nfe2l2) regulates the transcriptional response to oxidative stress and plays a critical protective role in the lungs.
Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice.
Specimen part
View SamplesThe transcription factor Nrf2 (gene symbol Nfe2l2) regulates the transcriptional response to oxidative stress and plays a critical protective role in the lungs.
Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory.
Specimen part
View SamplesDuring acute viral infections, nave CD8+ T cells differentiate into effector CD8+ T cells and, after viral control, into memory CD8+ T cells. Memory CD8+ T cells are highly functional, proliferate rapidly upon reinfection and persist long-term without antigen. In contrast, during chronic infections, CD8+ T cells become exhausted and have poor effector function, express multiple inhibitory receptors, possess low proliferative capacity, and cannot persist without antigen. To compare the development of functional memory T cells with poorly functional exhausted T cells, we generated longitudinal transcriptional profiles for each.
Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory.
Specimen part
View SamplesMicroRNA-155 (miR-155) is upregulated in primary effector CD8 T cells but is expressed at low amounts in nave cells. Anti-viral CD8 T cell responses and viral clearance were impaired in miR-155 deficient (bic-/-) mice, and this defect was intrinsic to CD8 T cells, as adoptively transferred bic-/- CD8 T cells generated greatly reduced primary and memory responses during infection. To understand the mechanism by which miR-155 regulates CD8 T cell activation, we analyzed the gene expression profiles of naive and in vitro activated wild-type and bic-/- CD8 T cells.
The microRNA miR-155 controls CD8(+) T cell responses by regulating interferon signaling.
Specimen part
View SamplesAntibiotic-treated (ABX) mice exhibit an impaired innate and adaptive antiviral immune response and substantially delayed viral clearance following exposure to systemic LCMV or mucosal influenza virus. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity.
Commensal bacteria calibrate the activation threshold of innate antiviral immunity.
Sex, Specimen part, Treatment
View SamplesDown syndrome (trisomy 21) is the most common genetic cause of intellectual disability, but the precise molecular mechanisms underlying impaired cognition remain unclear. Elucidation of these mechanisms has been hindered by the lack of a model system that contains full trisomy of chromosome 21 (Ts21) in a human genome that enables normal gene regulation. To overcome this limitation,we created Ts21-induced pluripotent stem cells (iPSCs) from two sets of Ts21 human fibroblasts. One of the fibroblast lines had low level mosaicism for Ts21 and yielded Ts21 iPSCs and an isogenic control that is disomic for human chromosome 21 (HSA21). Differentiation of all Ts21 iPSCs yielded similar numbers of neurons expressingmarkers characteristic of dorsal forebrain neurons that were functionally similar to controls. Expression profiling of Ts21 iPSCs and their neuronal derivatives revealed changes in HSA21 genes consistent with the presence of 50% more genetic material as well as changes in non- HSA21 genes that suggested compensatory responses to oxidative stress. Ts21 neurons displayed reduced synaptic activity, affecting excitatory and inhibitory synapses equally. Thus, Ts21 iPSCs and neurons display unique developmental defects that are consistent with cognitive deficits in individuals with Down syndrome and may enable discovery of the underlying causes of and treatments for this disorder.
Deficits in human trisomy 21 iPSCs and neurons.
Specimen part, Time
View SamplesInnate lymphoid cells (ILCs) are a recently recognized heterogenous group of immune cells that are critical in orchestrating immunity and inflammation in the intestine, but whether ILCs influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed the alloantigen Thy-1 (CD90), interleukin 2 (IL-2) receptor a-chain (CD25), IL-7 receptor a-chain (CD127) and the IL-33 receptor subunit T1-ST2. Notably, mouse ILCs accumulated in the lung after infection with influenza virus, and depletion of ILCs resulted in loss of airway epithelial integrity, diminished lung function and impaired airway remodeling. These defects were restored by administration of the lung ILC product amphiregulin. Collectively, our results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis after infection with influenza virus.
Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus.
Specimen part
View Samples