refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 159 results
Sort by

Filters

Technology

Platform

accession-icon GSE40116
mRNA profiling of glucose-repressed 14-3-3 and hdac yeast mutants
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Previous results suggest that Bmh might inhibit the activity of the transcription factor Adr1 after binding to Adr1-dependent promoters. In a strain lacking the two major histone deacetylases, Hda1 and Rpd3 (hdac), Adr1 is bound to its target promoters recruiting what appears to be an inactive RNA ploymerase II preinitiation complex (PIC). To determine whether Bmh activity inhibits this inactive PIC and the generality of this effect on glucose-repressed gene expression, the mRNA profiles of wild type, bmh mutant, hdac mutant, and bmh hdac mutant cells grown in high glucose medium were compared.

Publication Title

14-3-3 (Bmh) proteins regulate combinatorial transcription following RNA polymerase II recruitment by binding at Adr1-dependent promoters in Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP171067
Cxcr3 expressing leukocytes are necessary for neurofibroma formation in mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Plexiform neurofibroma is a major contributor to morbidity in Neurofibromatosis type I (NF1) patients. Macrophages and mast cells infiltrate neurofibroma, and data from mouse models implicate these leukocytes in neurofibroma development. Anti-inflammatory therapy targeting these cell populations has been suggested as a means to prevent neurofibroma development. Here, we compare gene expression in inflamed nerves from NF1 models which invariably form neurofibroma to those with inflammation driven by EGFR overexpression which rarely progresses to neurofibroma. We find that the chemokine Cxcl10 is uniquely up-regulated in NF1 mice that invariably develop neurofibroma. Global deletion of the CXCL10 receptor, Cxcr3, prevented neurofibroma development in these neurofibroma-prone mice. Cxcr3 expression localized to T cells and dendritic cells (DCs) in both inflamed nerves and neurofibromas. These data support a heretofore unappreciated role for T cells/DCs in neurofibroma initiation. Overall design: To identify cell populations associated with Cxcl10 expression, we utilized a single-cell RNA-Seq (scRNA-Seq) data set collected from 2-month Dhh-Cre;Nf1 fl/fl nerve/DRG using the 10x Genomics Chromium platform.

Publication Title

Cxcr3-expressing leukocytes are necessary for neurofibroma formation in mice.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE19519
Expression levels in immortalized B cells from unrelated individuals and twins undergoing ER stress
  • organism-icon Homo sapiens
  • sample-icon 220 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) results in the condition called ER stress which induces the unfolded protein response (UPR) which is a complex cellular process that includes changes in expression of many genes. Failure to restore homeostasis in the ER is associated with human diseases. To identify the underlying changes in gene expression in response to ER stress, we induced ER stress in human B-cells and then measured gene expression at 10 time-points. We followed up those results by studying cells from 60 unrelated people. We rediscovered genes that were known to play a role in ER stress response and uncovered several thousand genes that are not known to be involved. Two of these are VLDLR and INHBE which showed significant increase in expression following ER stress in B-cells and

Publication Title

Gene expression and genetic variation in response to endoplasmic reticulum stress in human cells.

Sample Metadata Fields

Cell line, Subject, Time

View Samples
accession-icon GSE41747
MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors, despite transcriptional feedback onto ERK.
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 83 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Neurofibromatosis Type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating effects of hyperactive Ras in NF1 tumors are unknown. Cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs identified global negative feedback of genes that regulate Ras-Raf- MEK- extracellular signal-regulated protein kinase (ERK) signaling in both species. Nonetheless, activation of ERK was sustained in mouse and human neurofibromas and MPNST. PD0325901, a highly selective pharmacological inhibitor of MEK, was used to test whether sustained Ras-Raf-MEK-ERK signaling contributes to neurofibroma growth in the Nf1fl/fl;Dhh-cre mouse model or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in >80% of mice tested. PD0325901 also caused effects on tumor vasculature. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide strong rationale for testing MEK inhibitors in NF1 clinical trials.

Publication Title

MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-313
Transcription profiling of human T-ALL patients at diagnosis and relapse
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A "Cartes d'Identite des Tumeurs" (CIT) project from the french Ligue Nationale Contre le Cancer (<a href="http://cit.ligue-cancer.net" target="_blank">http://cit.ligue-cancer.net</a>). 104 samples; Affymetrix U133A micro-arrays.<br></br> <br></br> Ninety two patients with T-ALL were diagnosed and treated at Saint-Louis hospital, Paris. Seven patients were studied at diagnosis and relapse (total 99 T-ALL samples). There were 56 children (median age 9 years old; range 1 to 16), and 36 adults (median age 27; range 17 to 66). Informed consent was obtained from the patients and/or relatives. T-ALL diagnosis was based on morphological and immunophenotypical criteria using flow cytometry and an extended monoclonal antibody panel.<br></br> <br></br> Using a combination of molecular cytogenetic and large-scale expression analysis in human T-ALL, we identified and characterized a new recurrent chromosomal translocation, targeting the major homeobox gene cluster HOXA and the TCRB locus. Specific quantitative PCR analysis showed that the expression of the whole HOXA gene cluster was dramatically dysregulated in the HOXA-rearranged cases, and also in MLL and CALM-AF10-related T-ALL cases, strongly suggesting that HOXA genes are oncogenic in these leukemias. Inclusion of HOXA-translocated cases in a general molecular portrait of 92 T-ALL based on large-scale expression analysis shows that this rearrangement defines a new homogeneous subgroup, which shares common biological networks with the TLX1 and TLX3-related cases. Since T-ALLs derive from T-cell progenitors, expression profiles of the distinct T-ALL subgroups were analyzed with respect to those of normal human thymic sub-populations. Inappropriate utilization or perturbation of specific molecular networks involved in thymic differentiation was detected. Moreover, we found a significant association between T-ALL oncogenic subgroups and ectopic expression of a limited set of genes, including several developmental genes, namely HOXA, TLX1, TLX3, NKX3-1, SIX6 and TFAP2C. These data strongly support the view that the abnormal expression of developmental genes, including the prototypical homeobox genes HOXA, is critical in T-ALL oncogenesis.<br></br> <br></br> Project Leader: <br></br> FranC'ois Sigaux<br></br> Institut Universitaire d'Hematologie<br></br> Hopital Saint Louis, Paris, France<br></br> <br></br> Data submission:<br></br>Fabien Petel

Publication Title

HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL).

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE19441
Critical role of the hydrogen peroxide-responsive nuclear kinase CK1-alpha-LS in vascular cell activation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

CK1-alpha-LS was knocked down in human coronary artery smooth muscle cells. Gene level and exon level changes in expression were assessed.

Publication Title

Protein kinase CK1alphaLS promotes vascular cell proliferation and intimal hyperplasia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP125882
Transcriptomic analysis to map mechanisms of viral replication control in HIV-1 positive Elite Controllers
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In order to understand the underlying mechanisms, which ensure that disease progression is prevented in EC, a comprehensive analysis of clinical phenotypes coupled to genetics and biomolecular mechanisms is required. The rapidly increasing accessibility of genetic and biomolecular expression data from new high-throughput technologies is the foundation to shift the traditional phenotype-first approach to explorative genetic or molecular data-first approaches. In this study, we aimed to explore a comprehensive analysis of host transcriptomics and proteomics data coupled to clinical phenotypes in a well-defined Swedish EC cohort with up to 20 years of clinical follow-up data.

Publication Title

Transcriptomics and Targeted Proteomics Analysis to Gain Insights Into the Immune-control Mechanisms of HIV-1 Infected Elite Controllers.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Treatment, Race

View Samples
accession-icon GSE72758
Hepatic expression of Sonic Hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The causative role of activated Hedgehog signaling in liver fibrosis was investigated in vivo.

Publication Title

Hepatic expression of Sonic Hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE56951
Regulation of gene expression by Set-beta in rat retinal ganglion cells
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

The goal of this experiment was to investigate the molecular mechanism of how Set-beta regulates neurite growth. Set-betas subcellular localization is regulated by posttranslational modifications. We found that Set-beta suppresses neurite growth of purified postnatal rat retinal ganglion cell (RGC) primary neurons when it is overexpressed in the nucleus, whereas recruiting Set-beta to cellular membrane by fusing myr-tag to its N-terminus promotes neurite growth. Here, we transfected purified by immunopanning postnatal rat RGC with wild-type Set-beta which localizes to the nucleus, myr-Set-beta which is recruited to cellular membranes, and mCherry control, and analyzed with microarrays Set-betas subcellular localization-dependent effects on gene expression. We found that wild-type Set- regulated expression of significantly more genes than myr-Set-, consistent with wild-type Set-s nuclear localization and previously described roles in regulating transcription. These data reveal potential downstream gene effectors regulating neurite growth, and specific candidate genes could be validated and tested in future experiments.

Publication Title

Regulating Set-β's Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE87732
Expression data from Daxx knockout MEFs
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Neuroendocrine tumors (NETs) often harbor loss-of-function mutations in Daxx gene. Daxx interacts with several partners to regulate cellular processes and gene expression.

Publication Title

Menin and Daxx Interact to Suppress Neuroendocrine Tumors through Epigenetic Control of the Membrane Metallo-Endopeptidase.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact