refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE37708
Age-specific variation in immune response in Drosophila melanogaster has a genetic basis.
  • organism-icon Drosophila melanogaster
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Immunosenescence, the age-related decline in immune system function, is a general hallmark of aging. While much is known about the cellular and physiological changes that accompany immunosenescence, we know very little about the genetic influences on this phenomenon.

Publication Title

Age-specific variation in immune response in Drosophila melanogaster has a genetic basis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP029367
FMRP-associated MOV10 facilitates and antagonizes miRNA-mediated regulation
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The fragile X mental retardation protein FMRP is an RNA binding protein that regulates translation of its bound mRNAs through incompletely defined mechanisms. FMRP has been linked to the microRNA pathway and we show here that it is associated with MOV10, a putative helicase that is also associated with the microRNA pathway. We show that FMRP associates with MOV10 in an RNA-dependent manner and facilitates MOV10-association with RNAs in brain. We identified the RNA sequences recognized by MOV10 using iCLIP and found an increased number of G-quadruplexes in the CLIP sites. We provide evidence that MOV10 facilitates microRNA-mediated translation regulation and also has the novel role of increasing the expression of a subset of RNAs by sterically hindering Argonaute2 association. In summary, we have identified a new mechanism for FMRP-mediated translational regulation through its association with MOV10. Overall design: Comparison of MOV10 siRNA knockdown, irrelevant siRNA control and MOV10 overexpression on total RNA levels

Publication Title

MOV10 and FMRP regulate AGO2 association with microRNA recognition elements.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP031507
Identification of the cellular RNAs bound by MOV10
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Using the iCLIP protocol we have identified the cellular RNA entities that are bound by MOV10. We report the location and sequence of the MOV10 binding region on each RNA entity. Overall design: To identify the RNAs that bound MOV10, we UV-cross-linked HEK293F cells and immunoprecipitated with an irrelevant antibody (ir or "control") followed by a MOV10-specific antibody (MOV10) to isolate associated RNAs after stringent washing.

Publication Title

MOV10 and FMRP regulate AGO2 association with microRNA recognition elements.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24145
Soybean root hair cell response to Bradyrhizobium japonicum inoculation
  • organism-icon Glycine max
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

Soybean root hair transcriptional response to their inoculation by the symbiotic bacteria B. japonicum involved in soybean nodulation. We used the first generation of an Affymetrix microarray to quantify the abundance of the transcripts from soybean root hair cells inoculated and mock-inoculated by B. japonicum. This experiment was performed on a time-course from 6 to 48 hours after inoculation.

Publication Title

Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE24609
FT1 and FT2 network analysis in poplar
  • organism-icon Populus tremula x populus tremuloides, Populus tremula x populus alba
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

We conducted microarray experiments by comparing constitutive and inducible Flowering Locus T1 (FT1) and FT2 constructs with appropriate controls, followed by the identification of common targets of Pro35S:FT1 and ProHSP:FT1 or Pro35S:FT2 and ProHSP:FT2.

Publication Title

FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar.

Sample Metadata Fields

Specimen part, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact