This SuperSeries is composed of the SubSeries listed below.
The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis.
Sex, Specimen part, Treatment
View SamplesIdentified genes deregulated in mouse primary hepatocytes after modulation of expression/activity of FOXA2 and FXR in glucagon or insulin state
The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis.
Sex, Specimen part, Treatment
View SamplesGene expression from iPSCs before and after gene correction
Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs.
Specimen part
View SamplesThe ability to assign expression patterns to individual cell types that constitute a tissue is a major challenge in RNA expression analysis. This especially applies to brain given the plethora of different cells coexisting in that tissue. Here, we derived cell-type specific transcriptome signatures from existing single cell RNA data and integrated these signatures with a newly generated dataset of expression (bulk RNA-seq) of the postnatal developing hippocampus. This integrated analysis allowed us to provide a comprehensive and unbiased prediction of the differentiation drivers for 10 different hippocampal cell types and describe how the different cell types interact to support crucial developmental stages. Our integrated analysis provides a reliable resource of predicted differentiation drivers and insight into the multifaceted aspects of the cells in hippocampus during development. Overall design: 21 RNA-seq samples. For the stages E15, P1, P7, P15, and P30, there are respectively 3, 4, 3, 3, and 6 RNA-seq biological replica (total 19). One RNA-seq sample has two technical replica.
Integrated transcriptional analysis unveils the dynamics of cellular differentiation in the developing mouse hippocampus.
Specimen part, Cell line, Subject
View SamplesLivers from wild-type (WT) or Ppara knock-out (Ppara KO) C57Bl6 mice were used to prepare RNA which was then processed for analysis using MoGene-2_0-st Affymetrix microarrays according to standard procedures.
The logic of transcriptional regulator recruitment architecture at <i>cis</i>-regulatory modules controlling liver functions.
Sex, Specimen part
View SamplesGenetic mutations on leucine-rich repeat kinase 2 (LRRK2) have been associated with an increased risk of Parkinson's disease. The Gly2019Ser (G2019S) mutation on LRRK2 gene is a relatively common cause of familial Parkinson's disease in Caucasian population. In this study, we generated human induced pluripotent stem cell (iPSC) lines from LRRK2 (G2019S) bearing patient fibroblasts by cell reprogramming.
Progressive degeneration of human neural stem cells caused by pathogenic LRRK2.
No sample metadata fields
View SamplesGenetic mutations on leucine-rich repeat kinase 2 (LRRK2) have been associated with an increased risk of Parkinson's disease. The Gly2019Ser (G2019S) mutation on LRRK2 gene is a relatively common cause of familial Parkinson's disease in Caucasian population.
Progressive degeneration of human neural stem cells caused by pathogenic LRRK2.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells.
Specimen part, Cell line
View SamplesThe tumor suppressor p53 regulates the differentiation of embryonic stem (ES) cells upon DNA damage. However, our understanding of this critical tumor suppressive role of p53 in ES cells is limited, mainly because of the lack of molecular mechanism. Here, we report a widespread cross-regulation of p53-mediated DNA damage signaling and the pluripotent gene network in ES cells using chromatin-immunoprecipitation assay-based sequencing (ChIP-seq) and gene expression microarray. Upon DNA damage, p53 directly regulates the transcription of 3644 genes (p<0.005) in mouse ES cells. Genome-wide analysis revealed a dramatic difference between the regulation of p53-activated and -repressed genes. p53 mainly regulates the promoter regions of activated genes, whereas the main regulatory regions for repressed genes reside in distal regions. Among p53-repressed genes, many are pluripotent transcription factors of ES cells, such as Oct4, Nanog, Sox2, Esrrb, c-Myc, n-Myc and Sall4. Strikingly, these transcriptional factors also directly regulate the transcription of the Trp53 gene, highlighting a previously under-estimated transcriptional regulation of p53 in ES cells. Therefore, p53 signaling and ES pluripotent transcriptional networks form an intertwined circuitry. Together, our results provide mechanistic insights into the crosstalk of p53-mediated DNA damage and ES cell "stemness" transcriptional gene networks and shed light on the tumor suppressive function of p53 in ES cells.
Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Establishment of human iPSC-based models for the study and targeting of glioma initiating cells.
Specimen part, Cell line, Treatment
View Samples