refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 11 results
Sort by

Filters

Technology

Platform

accession-icon GSE61100
Loss of p21 expression enhances DNA damage, cholestasis and hepatocarcinogenesis in the liver
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Overexpression of p21 in NEMOhepa animals protects against DNA damage, acceleration of hepatocarcinogenesis and cholestasis. As strengthened by our LPS stimulation experiments, we identified a novel protective role of p21 against DNA damage.

Publication Title

p21 ablation in liver enhances DNA damage, cholestasis, and carcinogenesis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE8714
Gene expression after transfection of IGF-II specific siRNAs
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Total RNA was isolated from HuH-7 cells after transfection of IGF-II specific siRNAs. Gene expression profiling was performed using the Affymetrix Human Genome U133A 2.0 Arrays. The raw data were analysed using mixed model ANOVA.

Publication Title

Autocrine insulin-like growth factor-II stimulation of tumor cell migration is a progression step in human hepatocarcinogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15811
ZMYM2/FGFR1, BCR/FGFR1 or BCR/ABL1 in human cord blood CD34+ cells reveals similar but distinct gene expression profiles
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The 8p11 myeloproliferative syndrome (EMS), also referred to as the stem cell leukemia/lymphoma syndrome, is a chronic myeloproliferative disorder that rapidly progresses into an acute leukemia. Molecularly, EMS is characterized by fusion of various partner genes to the FGFR1 gene, resulting in constitutive activation of the tyrosine kinase activity within FGFR1. The two most common fusion genes in human EMS are ZMYM2/FGFR1 (previously known as ZNF198/FGFR1) and BCR/FGFR1. To study the transcriptional programs becoming deregulated by the FGFR1 fusion genes, global gene expression analysis on human CD34+ cord blood cells expressing either of the fusion oncogenes ZMYM2/FGFR1 and BCR/FGFR1 was performed. As a reference gene we also included the more studied BCR/ABL1 fusion oncogene associated with chronic myeloid leukemia. We found that the 3 different fusion oncogenes had in common the upregulation of several genes involved in the JAK/STAT signalling pathway and also other sets of genes. However, the gene expression profiles were not identical, suggesting that both the tyrosine kinase containing gene and the partner gene would affect the transcription of downstream target genes.

Publication Title

Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60789
The Sweden Canceromics Analysis Network - Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SCANB SubSeries listed below.

Publication Title

The Sweden Cancerome Analysis Network - Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60785
The Sweden Canceromics Analysis Network - Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine [microarrays]
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Breast cancer exhibits significant molecular, pathological, and clinical heterogeneity. Current clinicopathological evaluation is imperfect for predicting outcome, which results in overtreatment for many patients, and for others, leads to death from recurrent disease. Therefore, additional criteria are needed to better personalize care and maximize treatment effectiveness and survival. To address these challenges, the Sweden Cancerome Analysis Network - Breast (SCAN-B) consortium was initiated in 2010 as a multicenter prospective study with longsighted aims to 1) analyze breast cancers with next-generation genomic technologies for translational research in a population-based manner and integrated with healthcare; 2) decipher fundamental tumor biology from these analyses; 3) utilize genomic data to develop and validate new clinically-actionable biomarker assays; and 4) build the infrastructure for real-time clinical implementation of molecular diagnostic, prognostic, and predictive tests. In the first phase, we focus on molecular profiling by next-generation RNA-sequencing on the Illumina platform. In the three years from August 30, 2010 through August 31, 2013, we have consented and enrolled 3,979 patients with primary breast cancer at the seven hospital sites in South Sweden, representing approximately 85% of eligible patients in the catchment area. Pre-operative blood samples have been collected for 3,942 (99%) patients and primary tumor specimens collected for 2,929 (74%) patients. Herein we describe the study infrastructure and present initial proof of concept results from prospective RNA-sequencing including tumor molecular subtyping and detection of driver gene mutations. We demonstrate that large-scale population-based collection and RNA-sequencing analysis of breast cancer is feasible. The SCAN-B Initiative should significantly reduce the time to discovery, validation, and clinical implementation of novel molecular diagnostic and predictive tests. We welcome the participation of additional comprehensive cancer treatment centers.

Publication Title

The Sweden Cancerome Analysis Network - Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52392
Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas
  • organism-icon Homo sapiens
  • sample-icon 94 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE52390
Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas [gene expression]
  • organism-icon Homo sapiens
  • sample-icon 94 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

We used the Infinium HumanHT-12 platform to profile gene expression in 79 primary, untreated high-grade soft tissue sarcomas, representing eight relevant subtypes, two non-neoplastic fat samples and 13 representative sarcoma cell lines.

Publication Title

Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP079923
Time course of myeloid differentiation in the Lysozyme-GFP ER-HoxA9 cells following estradiol withdrawal
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Lysozyme-GFP ER-HoxA9 cells were cultured in the presence of estradiol (active ER-HoxA9) or in the absence of estradiol (inactive ER-HoxA9). Samples were taken at 10 time points over a 120 hour time course of myeloid differentiation to examine those gene expression changes that accompany differentiation upon the release of HoxA9 differentiation arrest. Overall design: RNA Sequencing at 10 different time points done in duplicate

Publication Title

Inhibition of Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid Leukemia.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE76896
Affymetrix profiling of IMIDIA biobank samples from organ donors and partially pancreatectomized patients
  • organism-icon Homo sapiens
  • sample-icon 200 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes.

Sample Metadata Fields

Age

View Samples
accession-icon GSE76894
Affymetrix profiling of IMIDIA biobank samples from organ donors and partially pancreatectomized patients [organ donor cohort]
  • organism-icon Homo sapiens
  • sample-icon 99 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pancreatic islet beta cell failure causes type 2 diabetes (T2D). The IMIDIA consortium has used a strategy entailing a stringent comparative transcriptomics analysis of islets isolated enzymatically or by laser microdissection from two large cohorts of non-diabetic (ND) and T2D organ donors (OD) or partially pancreatectomized patients (PPP). This work led to the identification of a signature of genes that were differentially expressed between T2D and ND regardless of the sample type (OD or PPP). This signature includes 19 genes, of which 9 have never been previously reported to be differentially expressed in T2D islets. The PPP cohort also includes samples from individuals with impaired glucose tolerance (IGT) or recent onset diabetes associated with a pancreatic exocrine disorder (T3cD). Notably, none of the 19 signature genes of T2D islets were significantly dysregulated in islets of subjects with IGT or T3cD, suggesting that their changed expression reflects beta cell deterioration rather than a deficit preceding it.

Publication Title

Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes.

Sample Metadata Fields

Age

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact