refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE26591
Genome-scale reconstruction of the PurR regulon reveals its role in the adenine stimulon of Escherichia coli K-12 MG1655
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The PurR regulon in Escherichia coli K-12 MG1655.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26588
Transcriptome analysis of E. coli MG1655
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Expression profiling of wild type and purR deletion strains of E. coli K-12 MG1655 under both M9 minimal media and addition of adenine.

Publication Title

The PurR regulon in Escherichia coli K-12 MG1655.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP041547
Illumina Sequencing data of the influence on gene expression of insulator protein co-factor dMes-4
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The Drosophila insulator-binding proteins (IBPs) dCTCF/Beaf32 mark the physical borders of chromosomal domains involving co-factors that participate in long-range interactions. Chromosomal borders are further enriched in specific histone modifications yet the implication of histone modifiers and nucleosome dynamics remains largely unknown in such context. Here, we show that IBP depletion impairs nucleosome dynamics over genes flanked by their binding sites. Biochemical purification identifies a key histone methyltransferase of H3K36, NSD/dMes-4, as a novel co-factor of IBPs involved in chromatin accessibility, which specifically co-regulates hundreds of genes flanked by Beaf32/dCTCF. dMes-4 presets chromatin before the recruitment of transcriptional activators including DREF that triggers Set2/Hypb-mediated H3K36me3, RNA splicing and nucleosome positioning. Our results unveil a model for how IBPs regulate gene expression and nucleosome dynamics through NSD/dMes-4, which may contribute to regulate H3K27me3 spreading. Together, our data suggest a division of labor for how IBPs may dynamically regulate chromatin organization depending on distinct co-factors. Overall design: mRNA profiles of Beaf32-depleted or Wild-Type control Drosophila S2 cells by RNASeq (Illumina)

Publication Title

Insulators recruit histone methyltransferase dMes4 to regulate chromatin of flanking genes.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE23738
Global changes of expression patterns of vaccinia virus infected lungs of C57BL/6 mice.
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Vaccinia virus infection of mouse lungs produces a focal infection within the lung remaining at the large bronchi throughout the course of infection. Animals die of respiratory failure with little edema and few infiltrating immune cells. It is well established that poxviruses control the host immune system by encoding multiple host defense pathway antagonists.

Publication Title

Roles of vaccinia virus genes E3L and K3L and host genes PKR and RNase L during intratracheal infection of C57BL/6 mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE78806
Similarity of PDXs between passages and lineages using Affymetrix mRNA expression data
  • organism-icon Homo sapiens
  • sample-icon 659 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

PDX tumors at various passages post first implantation in nude mice

Publication Title

High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11805
PPARdelta ligand GW1516, AMPK agonist AICAR, and exercise training
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

AMPK and PPARdelta agonists are exercise mimetics.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11804
Pharmacological regulation of skeletal muscle gene expression
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Exercise activates serine/threonine kinase AMPK and transcriptional factor PPARdelta that re-model metabolism and endurance capacity of skeletal muscle. Whether and how synthetic activation of these molecules regulated muscle gene signature is unknown.

Publication Title

AMPK and PPARdelta agonists are exercise mimetics.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11803
Regulation of skeletal muscle gene expression by synthetic drugs and exercise
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Exercise training increases endurance by inducing global gene expression changes in skeletal muscles. The extent to which the genetic effects of exercise can be mimicked by synthetic drugs is unknown.

Publication Title

AMPK and PPARdelta agonists are exercise mimetics.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact