Analysis of in vivo antigen-specific (LCMV-specific, SMARTA TCR transgenic) follicular helper CD4 T cells (CXCR5high),versus non-follicular helper CD4 T cells (CXCR5low), eight days after viral infection. A paper including data analysis of these experiments has been accepted for publication (Robert J. Johnston et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of follicular helper CD4 T cell differentiation).
Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation.
Specimen part
View SamplesMRL/Faslpr mice is a lupus prone strain that exhibits lupus disease features at 12-16 weeks of age, including high-titer circulating anti-DNA antibodies, splenomegaly, lymphadnopathy, skin lesions, and IgG deposits in the kidney. At 16-24 weeks of age, CD4+ B220- CD44+ T cells were sorted into three populations based on the expression of two cell surface molecules, CD62L and PSGL1. CD62Lhi PSGL1hi, CD62Llo PSGL1hi, and CD62Llo PSGL1lo CD4+ T cells were isolated directly ex vivo. There was no treatment given to the animals. Naive (CD62Lhi CD44lo) CD4+ B220- T cells were isolated from young 6-8 week old female mice for comparison.
In vivo regulation of Bcl6 and T follicular helper cell development.
Specimen part
View SamplesHuman embryonic stem cells (hESCs) are a powerful tool for modeling regenerative therapy. To search for the genes that promote hematopoietic development from human pluripotent stem cell, we overexpressed a list of hematopoietic regulator genes in human pluripotent stem cell-derived CD34+CD43- endothelial cells (ECs) enriched in hemogenic endothelium. Among genes tested, only SOX17, a gene encoding a transcription factor of the SOX family, promoted cell growth and supported expansion of CD34+CD43+CD45-/low cells expressing a hemogenic endothelial maker VE-cadherin. SOX17 was highly expressed in CD34+CD43- ECs but at a low level in CD34+CD43+CD45- pre-hematopoietic progenitor cells (pre-HPCs) and CD34+CD43+CD45+ HPCs. SOX17-overexpressing cells formed sphere-like colonies and generated few hematopoietic progenies. However, they retained hemogenic potential and gave rise to hematopoietic progenies upon inactivation of SOX17. Global gene expression analyses revealed that the CD34+CD43+CD45-/low cells expanded upon overexpression of SOX17 are hemogenic endothelium-like cells developmentally placed between ECs and pre-HPCs. Of interest, SOX17 also reprogrammed both pre-HPCs and HPCs into hemogenic endothelium-like cells. Genome-wide mapping of SOX17 revealed that SOX17 directly activates transcription of key regulator genes for vasculogenesis, hematopoiesis, and erythrocyte differentiation. Depletion of SOX17 in CD34+CD43- ECs severely compromised their hemogenic activity. These findings suggest that SOX17 plays a critical role in priming hemogenic potential in ECs, thereby regulates hematopoietic development from hESCs.
Role of SOX17 in hematopoietic development from human embryonic stem cells.
Specimen part, Disease
View SamplesOverexpression of transcription factor Sox17 in human ES cells-derived endothelial cells and hematopoietic cells enhances expansion of hemogenic endothelium-like cells.
Role of SOX17 in hematopoietic development from human embryonic stem cells.
Specimen part
View SamplesWe generated iPSCs from imatinib-sensitive chronic myelogenous leukemia (CML) patient samples.
Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples.
Specimen part, Disease
View Samples