Non-neuronal cell types such as astrocytes can contribute to Parkinson's disease (PD) pathology. The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is one of the most common known causes of familial PD. To characterize its effect on astrocytes, we developed a protocol to produce midbrain-patterned astrocytes from human induced pluripotent stem cells (iPSCs) derived from PD LRRK2 G2019S patients and healthy controls. In order to understand the effect of this mutation on astrocyte function, we compared the gene expression profiles of iPSC-derived midbrain-patterned astrocytes from PD patients with those from healthy controls. Overall design: Bulk RNA-Seq profiles of human iPSC-derived midbrain-patterned astrocytes from 7 donors, including 4 patients with Parkinson's disease who carry the LRRK2 G2019S mutation, and 3 healthy control individuals
RNA sequencing reveals MMP2 and TGFB1 downregulation in LRRK2 G2019S Parkinson's iPSC-derived astrocytes.
Sex, Specimen part, Cell line, Subject
View SamplesG9a is an H3K9m2 methyltransferase, which is critical in controlling gene suppression and DNA methylation. We used microarray analysis to identify the target genes that are regulated by G9a in MDA-MB231 cells, in which E-cadherin is silenced.
G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer.
Specimen part, Cell line, Treatment
View SamplesWe report the transcriptome profile of one sequenced sample of mRNA isolated from pooled (20 from each genotype) abdomen fly extracts enriched in fat body content of fat body-specific Sdc RNAi knockdown and control flies Overall design: Abdominal fat body mRNA profiles of 4-6-day old control and fat body-specific Sdc RNAi knockdown were generated by deep sequencing using Illumina HiSeq 2500
Knockdown expression of Syndecan in the fat body impacts nutrient metabolism and the organismal response to environmental stresses in Drosophila melanogaster.
Subject
View SamplesBackground. Chronic fatiguing illness remains a poorly understood syndrome of unknown pathogenesis. We attempted to identify biomarkers for chronic fatiguing illness using microarrays to query the transcriptome in peripheral blood leukocytes. Methods. Cases were 44 individuals who were clinically evaluated and found to meet standard international criteria for chronic fatigue syndrome or idiopathic chronic fatigue, and controls were their monozygotic co-twins who were clinically evaluated and never had even one month of impairing fatigue. Biological sampling conditions were standardized and RNA stabilizing media were used. These methodological features provide rigorous control for bias resulting from case-control mismatched ancestry and experimental error. Individual gene expression profiles were assessed using Affymetrix Human Genome U133 Plus 2.0 arrays. Findings. There were no significant differences in gene expression for any transcript. Conclusions. Contrary to our expectations, we were unable to identify a biomarker for chronic fatiguing illness in the transcriptome of peripheral blood leukocytes suggesting that positive findings in prior studies may have resulted from experimental bias.
Gene expression in peripheral blood leukocytes in monozygotic twins discordant for chronic fatigue: no evidence of a biomarker.
Sex
View SamplesBesides the established selection criteria based on embryo morphology and blastomere number, new parameters for embryo viability are needed to improve the clinical outcome of in vitro fertilization (IVF) and more particular of elective single embryo transfer (eSET). The aim of the study was to analyse genome-wide whether the embryo viability was reflected by the expression of genes in the oocyte surrounding cumulus cells. Early cleavage (EC) was chosen as a parameter for embryo viability.
Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis.
No sample metadata fields
View SamplesThe cell surface mucin MUC1 is an important host factor limiting Helicobacter pylori (H. pylori) pathogenesis in both humans and mice by providing a protective barrier and modulating mucosal epithelial and leukocyte responses.
Influence of the MUC1 Cell Surface Mucin on Gastric Mucosal Gene Expression Profiles in Response to <i>Helicobacter pylori</i> Infection in Mice.
Time
View SamplesCells are constantly exposed to stress. Most of those stresses do not necessarily cause cell death or visible damage. The present study explores the way the immune system responds to such sub lethal stressed cells.
Cells exposed to sublethal oxidative stress selectively attract monocytes/macrophages via scavenger receptors and MyD88-mediated signaling.
Specimen part, Treatment
View SamplesPreviously, long-term effects on body weight and reproductive performance have been demonstrated in the chicken model of prenatal protein undernutrition by albumen removal. Introduction of such persistent alterations in phenotype suggests stable changes in gene expression. A genome-wide screening for differences in hepatic transcriptome by RNA-Seq was performed in adult Isa Brown hens (55 weeks of age). Albumen-deprived hens were created by removal of 3 ml of the albumen from fertilized eggs and replacement with saline early during embryonic development (embryonic day 1). Results were compared to mock-treated sham hens and non-treated control hens. Correlation between relative expression levels obtained from the RNA-Seq and qPCR results was very high (Pearson’s correlation coefficiënt = 0.85), confirming the validity of the RNA-Seq results. In addition, after expansion of the sample size, 7 out of 15 selected genes demonstrated the same significant gene expression differences in the qPCR as in the RNA-Seq dataset, and were thus biologically confirmed. Grouping of the differentially expressed (DE) genes according to biological functions revealed the involvement of processes such as ‘embryonic and organismal development’, ‘organ morphology’, ‘organ and tissue development’, ‘reproductive system development and function’. Molecular pathways that were altered were ‘amino acid metabolism’, ‘molecular transport’, ‘small molecule biochemistry’, ‘cell death and survival’, ‘cell-to-cell signaling and interaction’, ‘carbohydrate metabolism’ and ‘protein synthesis’. In conclusion, the present results demonstrated for the first time that prenatal protein undernutrition by albumen removal leads to long-term alterations of the hepatic transcriptome in the chicken. Overall design: 3 biological replicates per group (control, sham, albumen-deprived) were analyzed
Differential Expression of Genes and DNA Methylation associated with Prenatal Protein Undernutrition by Albumen Removal in an avian model.
Cell line, Subject
View SamplesGene expression changes in the heart of MCH3-KO mouse (HDAC3 f/f, Muscle Creatine Kinase-Cre) versus control WT mouse (HDAC3 f/f).
Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle.
Specimen part
View SamplesHuman intervention study with two doses of iron (as ferrous gluconate via intestinal perfusion) to study the effect on genome-wide gene expression in the small intestine, in order to obtain detailed information about intestinal transcriptomics in vivo.
Gene expression in human small intestinal mucosa in vivo is mediated by iron-induced oxidative stress.
Sex, Disease, Disease stage, Subject
View Samples