Analysis of strain-specific differences in gene expression in brains from a hydrocephalic mouse model of primary ciliary dyskinesia. The results identify genes that are differentially expressed between C57BL6/J and 129S6/SvEvTac brains. These genes encode proteins that function in a variety of cellular processes and include some that are relevant to hydrocephalus and cilia function, providing insight into the mechanisms underlying susceptibility to hydrocephalus.
Strain-specific differences in brain gene expression in a hydrocephalic mouse model with motile cilia dysfunction.
Age, Specimen part
View SamplesThe MYC transcription factor is an unstable protein and its turnover is controlled by the ubiquitin system. Ubiquitination enhances MYC-dependent transactivation, but the underlying mechanism remains unresolved. Here we show that proteasomal turnover of MYC is dispensable for recruitment of RNA polymerase II (RNAPII), but is required to promote transcriptional elongation at MYC target genes. Degradation of MYC stimulates histone acetylation and recruitment of BRD4 and P-TEFb to target promoters, leading to phosphorylation of RNAPII CTD and the release of elongating RNAPII. In the absence of degradation, the RNA polymerase II-associated factor (PAF) complex associates with MYC via interaction of its CDC73 subunit with a conserved domain in the amino-terminus of MYC ("MYC box I"), suggesting that a MYC/PAF complex is an intermediate in transcriptional activation. Since histone acetylation depends on a second highly conserved domain in MYCs amino-terminus ("MYC box II"), we propose that both domains co-operate to transfer elongation factors onto paused RNAPII. Overall design: RNA-Seq Experiments were performed in a primary breast epithelial cell line (IMEC).The cell line expressed doxycycline-inducible versions of MYC (WT;Kless,Swap=WTN-KC). Where indicated cells were transfected with siRNAs (siCtrl;siSKP2). Where indicated cells were treaed with the proteasome inhibitor MG132 or EtOH as solvent control. DGE was performed by comparing Dox-treated populations expressing either Dox-inducible MYC or a vector control or comparing Dox-induced cells with EtOH (solvent control) treated cells.
Ubiquitin-Dependent Turnover of MYC Antagonizes MYC/PAF1C Complex Accumulation to Drive Transcriptional Elongation.
No sample metadata fields
View SamplesWe identified the Hippo pathway and its effector YAP as a key pathway that controls stellate cell activation. YAP is a transcriptional co-activator and we found that it drives the earliest changes in gene expression during stellate cell activation.
The Hippo pathway effector YAP controls mouse hepatic stellate cell activation.
Specimen part, Treatment
View SamplesIn several developmental lineages, an increase in expression of the MYC proto-oncogene drives the transition from quiescent stem cells to transit amplifying cells. The mechanism by which MYC restricts self-renewal of adult stem cells is unknown. Here, we show that MYC activates a stereotypic transcriptional program of genes involved in protein translation and mitochondrial biogenesis in mammary epithelial cells and indirectly inhibits the YAP/TAZ co-activators that are essential for mammary stem cell self-renewal. We identify a phospholipase of the mitochondrial outer membrane, PLD6, as the mediator of MYC activity. PLD6 mediates a change in the mitochondrial fusion/fission balance that promotes nuclear export of YAP/TAZ in a LATS- and RHO-independent manner. Mouse models and human pathological data confirm that MYC suppresses YAP/TAZ activity in mammary tumors. PLD6 is also required for glutaminolysis, arguing that MYC-dependent changes in mitochondrial dynamics balance cellular energy metabolism with the self-renewal potential of adult stem cells. Overall design: RNA-Seq Experiments in 2 different primary breast epithelial cell lines (HMLE, which were sorted according to CD44/CD24 surface markers & unsorted IMEC). Both cell lines expressed a doxycycline-inducible version of MYC. For the HMLE cell line DGE analysis was performed for the uninduced (EtOH) situation, comparing CD44high vs CD44 low and for the induced situation Dox vs. EtOH for the CD44high population. For the IMEC cell line DGE was performed by comparing Dox-treated populations expressing either Dox-inducible MYC or a vector control which allows to filter out potential effects due to doxycycline treatment.
A MYC-Driven Change in Mitochondrial Dynamics Limits YAP/TAZ Function in Mammary Epithelial Cells and Breast Cancer.
No sample metadata fields
View Samples