refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 336 results
Sort by

Filters

Technology

Platform

accession-icon GSE31123
Discovery of genes differentially-expressed in the endothelium of lymph nodes draining metastatic versus non-metastatic tumors
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Metastasis to lymph nodes is an early and prognostically important event in the progression of many human cancers, and is associated with expression of vascular endothelial growth factor-D (VEGF-D). Changes to lymph node vasculature occur during metastasis, and may establish a metastatic niche capable of attracting and supporting tumor cells.

Publication Title

A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE39770
Expression data from embryonic stem cells following siRNA transfection of UPS members [Differentiation_ES]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

While transcriptional regulation of stem cell self-renewal and differentiation has been extensively studied, only a small number of studies have addressed the roles for post-translational modifications in these processes. A key mechanism of post-translational modification is ubiquitination by the ubiquitin-proteasome system (UPS). Using UPS-targeted RNAi screens, we identify novel regulators of pluripotency and differentiation. We focus on two of these proteins, the deubiquitinating enzyme, Psmd14, and the E3 ligase, Fbxw7, and characterize their importance in ES cell pluripotency and cellular reprogramming.

Publication Title

Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE39771
Expression data from embryonic stem cells following siRNA transfection of UPS members [self_renewal]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

While transcriptional regulation of stem cell self-renewal and differentiation has been extensively studied, only a small number of studies have addressed the roles for post-translational modifications in these processes. A key mechanism of post-translational modification is ubiquitination by the ubiquitin-proteasome system (UPS). Using UPS-targeted RNAi screens, we identify novel regulators of pluripotency and differentiation. We focus on two of these proteins, the deubiquitinating enzyme, Psmd14, and the E3 ligase, Fbxw7, and characterize their importance in ES cell pluripotency and cellular reprogramming.

Publication Title

Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE39772
Regulation of Pluripotency and Cellular Reprogramming by the Ubiquitin Proteasome System
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE8761
Transcriptional profiling of ribosomal protein knockouts
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Duplicated genes escape gene loss by conferring a dosage benefit or evolving diverged functions. The yeast Saccharomyces cerevisiae contains many duplicated genes encoding ribosomal proteins. Prior studies have suggested that these duplicated proteins are functionally redundant and affect cellular processes in proportion to their expression. In contrast, through studies of ASH1 mRNA in yeast, we demonstrate paralog-specific requirements for the translation of localized mRNAs. Intriguingly, these paralog-specific effects are limited to a distinct subset of duplicated ribosomal proteins. Moreover, transcriptional and phenotypic profiling of cells lacking specific ribosomal proteins reveals differences between the functional roles of ribosomal protein paralogs that extend beyond effects on mRNA localization. Finally, we show that ribosomal protein paralogs exhibit differential requirements for assembly and localization. Together, our data indicate complex specialization of ribosomal proteins for specific cellular processes, and support the existence of a ribosomal code.

Publication Title

Functional specificity among ribosomal proteins regulates gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP033057
Functional Annotation of Colon Cancer Risk SNPs
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

To understand the funtion of Colorectal cancer GWAS results, we perform a comprehensive analysis using biofeatures of HCT116 colon cancer cell line and got a list of risk-asscociated SNP. Risk-associated SNP are likely exerting their effects through promoters or enhancer. In order to understand the importance of the genes with risk-associated SNP in their promoters and enhancers'' putatively targeted genes, we did a comparison of these genes between HCT116 colon cancer cell and normal colon and try to understand their function Overall design: Two biological replicates of HCT116 were compared to the data of two normal colon samples already deposited in GEO (GSM1010974 and GSM1010942).

Publication Title

Functional annotation of colon cancer risk SNPs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP008280
Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin hubs
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We have analyzed publicly available K562 Hi-C data, which enables genome-wide unbiased capturing of chromatin interactions, using a Mixture Poisson Regression Model to define a highly specific set of interacting genomic regions. We integrated multiple ENCODE Consortium resources with the Hi-C data, using DNase-seq data and ChIP-seq data for 46 transcription factors and 8 histone modifications. We classified 12 different sets (clusters) of interacting loci that can be distinguished by their chromatin modifications and which can be categorized into three types of chromatin hubs. The different clusters of loci display very different relationships with transcription factor binding sites. As expected, many of the transcription factors show binding patterns specific to clusters composed of interacting loci that encompass promoters or enhancers. However, cluster 6, which is distinguished by marks of open chromatin but not by marks of active enhancers or promoters, was not bound by most transcription factors but was highly enriched for 3 transcription factors (GATA1, GATA2, and c-Jun) and 3 chromatin modifiers (BRG1, INI1, and SIRT6). To validate the identification of the clusters and to dissect the impact of chromatin organization on gene regulation, we performed RNA-seq analyses before and after knockdown of GATA1 or GATA2. We found that knockdown of the GATA factors greatly alters the expression of genes within cluster 6. Our work, in combination with previous studies linking regulation by GATA factors with c-Jun and BRG1, provide genome-wide evidence that Hi-C data identifies sets of biologically relevant interacting loci. Overall design: RNA-seq of control, siGATA1 and siGATA2 K562 cells

Publication Title

Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP043043
Global analysis of ZNF217 chromatin occupancy in the breast cancer cell genome reveals an association with Eralpha
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Background: The ZNF217 gene, encoding a C2H2 zinc finger protein, is located at 20q13 and found amplified and overexpressed in greater than 20% of breast tumors. Current studies indicate ZNF217 drives tumorigenesis, yet the regulatory mechanisms of ZNF217 are largely unknown. Because ZNF217 associates with chromatin modifying enzymes, we postulate that ZNF217 functions to regulate specific gene signaling networks. Here, we present a large-scale functional genomic analysis of ZNF217, which provides insights into the regulatory role of ZNF217 in MCF7 breast cancer cells. Results: ChIP-seq analysis reveals that the majority of ZNF217 binding sites are located at distal regulatory regions associated with the chromatin marks H3K27ac and H3K4me1. Analysis of ChIPseq transcription factor binding sites shows clustering of ZNF217 with FOXA1, GATA3 and ERalpha binding sites, supported by the enrichment of corresponding motifs for the ERalpha-associated cisregulatory sequences. ERalpha expression highly correlates with ZNF217 in lysates from breast tumors (n=15), and ERalpha co-precipitates ZNF217 and its binding partner CtBP2 from nuclear extracts. Transcriptome profiling following ZNF217 depletion identifies differentially expressed genes co-bound by ZNF217 and ERalpha; gene ontology suggests a role for ZNF217-ERalpha in expression programs associated with ER+ breast cancer studies found in the Molecular Signature Database. Data-mining of expression data from breast cancer patients correlates ZNF217 with reduced overall survival in multiple subtypes. Conclusions: Our genome-wide ZNF217 data suggests a functional role for ZNF217 at ERalpha target genes. Future studies will investigate whether ZNF217 expression contributes to aberrant ERalpha regulatory events in ER+ breast cancer and hormone resistance Overall design: Differential RNA-seq profiling from triplicate biological replicates of MCF7 cells treated with scrambled siRNA or siZNF217.

Publication Title

Global analysis of ZNF217 chromatin occupancy in the breast cancer cell genome reveals an association with ERalpha.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP013504
Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the genome by association with GATA3
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

The TCF7L2 transcription factor is linked to a variety of human diseases, including type 2 diabetes and cancer. One mechanism by which TCF7L2 could influence expression of genes involved in diverse diseases is by binding to distinct regulatory regions in different tissues. To test this hypothesis, we performed ChIP-seq for TCF7L2 in 6 human cell lines. We identified 116,000 non-redundant TCF7L2 binding sites, with only 1,864 sites common to the 6 cell lines. Using ChIP-seq, we showed that many genomic regions that are marked by both H3K4me1 and H3K27Ac are also bound by TCF7L2, suggesting that TCF7L2 plays a critical role in enhancer activity. Bioinformatic analysis of the cell type-specific TCF7L2 binding sites revealed enrichment for multiple transcription factors, including HNF4alpha and FOXA2 motifs in HepG2 cells and the GATA3 motif in MCF7 cells. ChIP-seq analysis revealed that TCF7L2 co-localizes with HNF4alpha and FOXA2 in HepG2 cells and with GATA3 in MCF7 cells. Interestingly, in MCF7 cells the TCF7L2 motif is enriched in most TCF7L2 sites but is not enriched in the sites bound by both GATA3 and TCF7L2. This analysis suggested that GATA3 might tether TCF7L2 to the genome at these sites. To test this hypothesis, we depleted GATA3 in MCF7 cells and showed that TCF7L2 binding was lost at a subset of sites. RNA-seq analysis suggested that TCF7L2 represses transcription when tethered to the genome via GATA3. Our studies demonstrate a novel relationship between GATA3 and TCF7L2, and reveal important insights into TCF7L2-mediated gene regulation. Overall design: RNAseq analysis of MCF7 cells transfected with siCONTROL, siTCF7L2 or siGATA3. ChIP-seq analysis of H3K27ac, H3K4me1, H3K27me3, H3K9me3 in MCF7 cells; H3K4me1 and H3K27ac in HCT116 cells.

Publication Title

Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the genome by association with GATA3.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18829
Discovering Hematopoietic Mechanisms Through Genome-Wide Analysis of GATA Factor Chromatin Occupancy
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina mouseRef-8 v1.1 expression beadchip

Description

GATA factors interact with simple DNA motifs (WGATAR) to regulate critical processes, including hematopoiesis, but very few WGATAR motifs are occupied in genomes. Given the rudimentary knowledge of mechanisms underlying this restriction, and how GATA factors establish genetic networks, we used ChIP-seq to define GATA-1 and GATA-2 occupancy genome-wide in erythroid cells. Coupled with genetic complementation analysis and transcriptional profiling, these studies revealed a rich collection of targets containing a characteristic binding motif of greater complexity than WGATAR. GATA factors occupied loci encoding multiple components of the Scl/TAL1 complex, a master regulator of hematopoiesis and leukemogenic target. Mechanistic analyses provided evidence for cross-regulatory and autoregulatory interactions among components of this complex, including GATA-2 induction of the hematopoietic corepressor ETO-2 and an ETO-2 negative autoregulatory loop. These results establish fundamental principles underlying GATA factor mechanisms in chromatin and illustrate a complex network of considerable importance for the control of hematopoiesis.

Publication Title

Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact