Fyn kinase has been implicated in multiple behavioral responses to ethanol and in the regulation of myelin gene expression. Here we tested whether Fyn kinase modulated basal or ethanol-responsive expression of genes regulated by acute ethanol in brain regions of the mesolimbocortical dopamine pathway.
Fyn-dependent gene networks in acute ethanol sensitivity.
Sex, Age, Specimen part, Treatment
View SamplesPurpose: Traditional whole-tissue sequencing approaches do not fully capture brain cell-type specific effects of chronic alcohol. Therefore, the purpose of this study was to identify the specific transcriptome alterations in astrocytes due to chronic alcohol. Methods: We performed RNA-sequencing on astrocytes isolated from the prefrontal cortex (PFC) of C57BL/6J mice following chronic every-other-day alcohol consumption. Results: Differential expression analysis revealed alcohol-induced gene expression changes unique to astrocytes that could not be identified using whole tissue homogenate analysis. Enrichment analysis revealed involvement of calcium-related signaling and regulation of extracellular matrix genes in the astrocyte response to alcohol abuse. Conclusion: Our study presents the first focused analysis on the astrocyte transcriptome following chronic alcohol consumption, provides a framework for studying the functional response of astrocytes to alcohol and the possible astrocyte-specific effects of alcohol. In addition, our data represents a novel resource for groups interested in biological functions of astrocytes in the adult mouse PFC. Overall design: Illumina RNA-sequencing of isolated astrocytes and total homogenate from PFC of mice following chronic alcohol consumption
Astrocyte-specific transcriptome responses to chronic ethanol consumption.
Specimen part, Cell line, Treatment, Subject
View SamplesMicroglia are fundamentally important immune cells within the central nervous system (CNS) that respond to environmental challenges to maintain normal physiological processes. Alterations in steady-state cellular function and over-activation of microglia can facilitate the initiation and progression of neuropathological conditions such as Alzheimer's disease, Multiple Sclerosis, and Major Depressive Disorder. Alcohol consumption disrupts signaling pathways including both innate and adaptive immune responses that are necessary for CNS homeostasis. Unbiased RNA-Seq profiling was used to identify gene expression changes in isolated microglia in response to recurring bouts of voluntary alcohol drinking behavior. Gene coexpression analysis identified a coordinately regulated group of genes, unique to microglia, that collectively are associated with alcohol consumption. Several genes in this group were involved in toll-like receptor signaling and production of the inflammatory cytokine interferon-gamma. Coordinate expression of these genes is not ascertained from an admixture of CNS cell-types, underscoring the importance of examining isolated cellular populations to reveal systematic gene expression changes arising from mature microglia. We identified a distinctive microglial gene expression signature for neuroimmune responses related to alcohol consumption that provides valuable insight into microglia-specific changes underlying the development of substance abuse, as well as related CNS disorders. Overall design: We examined mRNA from both total homogenate (mixture of all cell types) and microglia from the cortex of control mice and mice that have undergone chronic voluntary ethanol consumption
Microglial-specific transcriptome changes following chronic alcohol consumption.
Specimen part, Cell line, Treatment, Subject
View SamplesWe have identified a CD57+PD1- CD4 T cell phenotype at the time of transplantation that strongly correlates with subsequesnt development of belatacept-resistant rejection. In this study, we used microarray to determine which genes were upregulated in CD57+ compared to CD57- CD4 T cells.
CD57(+) CD4 T Cells Underlie Belatacept-Resistant Allograft Rejection.
Specimen part, Subject
View SamplesThis study sought correlates of relapse tendency in TTP by examining gene expression profiles in peripheral blood leukocytes from patients with acquired ADAMTS13-deficient TTP in remission and matched healthy controls for global gene expression and autoantibodies.
Ribosomal and immune transcripts associate with relapse in acquired ADAMTS13-deficient thrombotic thrombocytopenic purpura.
Specimen part, Disease, Disease stage
View SamplesLong-term dynamic compression enhanced the mechanical properties of MSC-seeded constructs only when loading was initiated after 21 days of chondrogenic differentiation. This study examined the molecular differences of chondrogenic MSCs compared to undifferentiated MSCs (TGF-beta vs no TGF-beta) and the effects of dynamic loading on MSC chondrogenesis (loading vs free-swelling).
Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel.
Specimen part, Disease
View SamplesSpatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. Overall design: We generated single-cell RNA-seq profiles from dissociated cells from developing zebrafish embryos (late blastula stage - 50% epiboly)
Spatial reconstruction of single-cell gene expression data.
Subject
View SamplesSMART-seq2 was performed on single cells isolated from visually staged zebrafish embryos. Overall design: Samples were all sequenced in one batch. Some were generated with a 5'' UMI-tagged method, and others are full-length SMART-seq2.
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.
Subject
View SamplesWild-type zebrafish embryos were mechanically dissociated and profiled using Drop-seq Overall design: Drop-seq was performed on 28 groups of 20-40 visually staged, mechanically dissociated embryos. Samples were combined and sequenced in batches DS2-DS5.
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.
Subject
View SamplesWild-type and MZoep zebrafish embryos were mechanically dissociated and profiled using 10x Genomics pipeline. Overall design: 10x scRNA-seq was performed on visually staged, mechanically dissociated embryos. Samples were combined and sequenced in one batch.
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.
Subject
View Samples