refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 47 results
Sort by

Filters

Technology

Platform

accession-icon GSE43940
Analysis of embryonic day E14.5 and E16.5 mouse ureters from Tshz3LacZ/LacZ mutants and wild types
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In the urinary tract, smooth muscle (SM) is present in the renal pelvis, the ureter, the bladder and the urethra and plays a crucial role in the functional and structural integrity of these organs. In Tshz3 mutant ureters the myogenic program is not activated in the proximal region due to the absence of expression of myocardin (Myocd), a key regulator of SM differentiation. We set out to characterize TSHZ3-dependent mechanisms that participate to the process of ureteric smooth muscle cells (SMC) differentiation.

Publication Title

The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34551
NPTX1 is a Critical Regulator of Neural Induction in Human Pluripotent Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

NPTX1 is a key inducer of neural lineages from the human ESC.

Publication Title

NPTX1 regulates neural lineage specification from human pluripotent stem cells.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon SRP141733
Human gut derived-organoids as model to study gluten response and effects of microbiota bioproducts in celiac disease
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Celiac disease (CeD) is an intestinal immune-mediated disorder caused by gluten ingestion in genetically predisposed subjects. CeD is characterized by villous atrophy, altered intestinal permeability, crypt hyperplasia and innate and adaptive immune response. This study aimed to develop and validate the use of intestinal organoids from celiac patients to study CeD. A repository of organoids from duodenum of non-celiac and celiac patients was generated and characterized accordingly to standard procedures. RNA-seq analysis was employed to study the global gene expression program of CeD (n=3) and non-CeD (n=3) organoids sets. While the three celiac derived organoids shared similar transcriptional signatures the NC samples set appeared more heterogeneous. We found 486 genes differentially expressed between the two groups. Of them, 299 genes were downregulated (FC<2; FDR<0.05) and 187 were upregulated in CeD (FC >2; FDR<0.05). We observed CeD organoids had significantly altered expression of genes associated with barrier function, innate immunity, and stem cell function. Overall design: mRNA profiles of 3 non-celiac healthy controls and 3 celiac organoids derived from duodenal biopsies.

Publication Title

Human gut derived-organoids provide model to study gluten response and effects of microbiota-derived molecules in celiac disease.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE52548
Aire co-opts the repressive ATF7ip/MBD1 protein complex for the induction of immune tolerance
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE52546
Gene expression of HEK 293 cells transfected with Vector (PCMV), Aire, or MBD-VP16
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

HEK 293 cells were transiently transfected with plasmids expressing Vector only(PCMV), Aire, or MBD-VP16 with the goal of comparing the global gene expression profiles in the Aire and MBD-VP16 groups

Publication Title

The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE17043
Molecular and functional characterization of FD-iPSC derived neural crest precursor cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

Global gene expression analysis of FD-iPSC and deribved neural crest cells

Publication Title

Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12345
Global gene expression profiling of human pleural mesotheliomas
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The goal of our study was to molecularly dissect mesothelioma tumor pathways by mean of microarray technologies in order to identify new tumor biomarkers, that could be used as early diagnostic markers and possibly as specific molecular therapeutic targets. We performed Affymetrix U133A plus 2.0 microarray analysis comparing 9 human pleural mesotheliomas with 4 normal pleural specimen. Stringent statistical feature selection detected a set of differentially expressed genes that were further evaluated to identify potential biomarkers to be used in early diagnostics. Selected genes were confirmed by RT-PCR. As reported by other mesothelioma profiling studies, most of genes are involved in G2/M transition. Our list contains several genes previously described as prognostic classifier. Furthermore, we found novel genes never associated before to mesothelioma and could be involved in tumor progression. Notable, the identification of MMP-14, a member of matrix metalloproteinase family. This molecule has been described as a new disease marker and could be used as biomarker also for mesothelioma early diagnosis and prognosis and that can be viewed as new and effective therapeutic target to test.

Publication Title

Global gene expression profiling of human pleural mesotheliomas: identification of matrix metalloproteinase 14 (MMP-14) as potential tumour target.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34733
Methylation of the Proximal, Distal and Core Promoter of CEBPA in 572 Cases with Normal Karyotpye AML and 44 with t(8;21) Disclosed Different Frequencies but no Impact on Prognosis
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The clinical impact of aberrant CEBPA promoter methylation (PM) in AML is controversial discussed. The aim of this study was to clarify the significance of aberrant CEBPA PM with regard to clinical features in a cohort of 572 de novo AML with wildtype CEBPA and normal karyotype. The distal promoter was methylated in 54/572 cases (9.41%) whereas proximal PM was never detected. Methylation of the core promoter was detected in only 8 of 326 cases (2.45%) and thus seems to be a rare event in AML. There was no correlation between CEBPA distal PM, age, sex, white blood cell (WBC) count or Hb levels at diagnosis. We also were not able to detect a significant correlation between the presence of CEBPA distal PM and molecular mutations such as FLT3-ITD, NPM1, AML1, MLL-PTD and IDH1. Solely the frequency of IDH2R140 mutations was significantly reduced in CEBPA distal PM positive compared to CEBPA distal PM negative cases (p=0.01). Furthermore, analysis of CEBPA mRNA expression level revealed no difference between CEBPA distal PM positive and CEBPA distal PM negative cases, suggesting that CEBPA distal PM has no influence on CEBPA expression. CEBPA distal PM did not show impact on overall survival (OS), event free survival (EFS) or incidence of relapse. Also when other mutations were taken into regard no prognostic impact of CEBPA distal PM could be shown. In contrast, a distinct expression profile of CEBPA distal PM positive cases compared to CEBPA mutated and CEBPA distal PM negative cases was observed. In addition, a significantly higher frequency of CEBPA distal PM was detected in RUNX1-RUNX1T1 positive AML compared to the CEBPA witdtype cases. We conclude that the presence of aberrant CEBPA PM has no clinical relevance and is therefore a negligible prognostic marker in de novo AML with normal karyotype.

Publication Title

Frequency and prognostic impact of CEBPA proximal, distal and core promoter methylation in normal karyotype AML: a study on 623 cases.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE37084
Transcriptome analysis of Myotonic Dystrophy type 2 (DM2) patients.
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Myotonic Dystrophy Type-2 (DM2) is an autosomal dominant disease caused by the expansion of a CCTG tetraplet repeat. It is a multisystemic disorder, affecting skeletal muscles, the heart, the eye, the central nervous system and the endocrine system.

Publication Title

Genome wide identification of aberrant alternative splicing events in myotonic dystrophy type 2.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE42064
Acute myeloid leukemia with CEBPA double-mutations harbors in 76.8% of cases concomitant molecular mutations with TET2 and GATA2 alterations demonstrating strong prognostic impact
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Acute myeloid leukemia (AML) with CEBPA mutations is determined as provisional entity in the current WHO. A difference in clinical outcome between single- (sm) and double-mutated (dm) cases has been reported, whereupon dm cases were shown to be associated with longer overall survival (OS). The occurrence and prognostic impact of concomitant molecular mutations in addition to CEBPAdm has not been assessed until now. Here, we investigated a cohort of 95 AML CEBPAdm cases for concomitant mutations. TET2 was found to be the most frequent mutation (32/94, 34.0%), followed by GATA2 (20/95, 21.0%), WT1 (13/95, 13.7%), DNMT3A (9/94, 9.6%), ASXL1 (9/95, 9.5%), NRAS (8/95, 8.4%), KRAS (3/94, 3.2%), IDH1/2 (6/95, 6.3%), FLT3-ITD (6/95, 6.3%), FLT3-TKD (2/95, 2.1%), NPM1 (2/95, 2.1%), and RUNX1 (1/94). No mutation was detected in MLL-PTD and TP53. With respect to prognostic impact, we observed that those cases harboring additional mutations in TET2 showed significant worse survival than wild-type cases (P=0.035), whereas GATA2 mutated cases showed improved survival (P=0.032). Further, using gene expression microarray analysis we identified no clear different clustering within the CEBPAdm cases with the distinct concomitant mutated genes. In conclusion, we demonstrated that 76.8% of CEBPAdm cases harbored additional alterations in other molecular markers and that CEBPA is a suitable MRD marker to control therapy.

Publication Title

CEBPA double-mutated acute myeloid leukaemia harbours concomitant molecular mutations in 76·8% of cases with TET2 and GATA2 alterations impacting prognosis.

Sample Metadata Fields

Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact