Micro (mi)RNAs are small non-coding RNAs with key regulatory functions. Recent advances in the field allowed researchers to identify their targets. However, much less is known regarding the regulation of miRNA themselves. The accumulation of these tiny regulators can be modulated at various levels during their biogenesis from the transcription of the primary transcript (pri-miRNA) to the stability of the mature miRNA. Here, we studied the importance of the pri-miRNA secondary structure for the regulation of mature miRNAs accumulation. To this end, we used the Kaposi’s sarcoma herpesvirus, which encodes a cluster of twelve pre-miRNAs. Using small RNA profiling and quantitative northern blot analysis, we measured the absolute amount of each mature miRNAs in different cellular context. We found that the difference in expression between the least and most expressed viral miRNA could be as high as 60-fold. Using high-throughput selective 2’-hydroxyl acylation analyzed by primer extension (hSHAPE), we then determined the secondary structure of the long primary transcript. We found that highly expressed miRNAs derived from optimally structured regions within the pri-miRNA. Finally, we confirmed the importance of the local structure by swapping stem-loops for highly and lowly expressed miRNAs, which resulted in a perturbed accumulation of the mature miRNA. Overall design: Examination of sRNA profiles in 3 independent B cell lines expressing KSHV miRNAs or infected with KSHV, without replicate
Importance of the RNA secondary structure for the relative accumulation of clustered viral microRNAs.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
LEADeR role of miR-205 host gene as long noncoding RNA in prostate basal cell differentiation.
Cell line
View SamplesHerpesviruses are known to encode micro (mi)RNAs and to use them to regulate the expression of both viral and cellular genes. The genome of Kaposis sarcoma herpesvirus (KSHV) encodes a cluster of twelve miRNAs, which are abundantly expressed during both latency and lytic infection. Relatively few cellular targets of KSHV miRNAs are known. Here, we used a microarray expression profiling approach to analyze the transcriptome of both B lymphocytes and endothelial cells stably expressing KSHV miRNAs and monitor the changes induced by the presence of these miRNAs. We generated a list of potential cellular targets by looking for miRNA seed-match-containing transcripts that were significantly down regulated upon KSHV miRNAs expression. Interestingly, the overlap of putative targets identified in B lymphocytes and endothelial cells was minimal, suggesting a tissue-specific target-regulation by viral miRNAs. Among the putative targets, we identified caspase 3, a critical factor for the control of apoptosis, which we validated using luciferase reporter assays and western blotting. In functional assays we obtained further evidence that KSHV miRNAs indeed protect cells from apoptosis.
Kaposi's sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis.
Cell line
View SamplesWe aimed at analyzing the transcriptome changes associated with the deletion of a portion of the Alu element from MIR205HG transcript
LEADeR role of miR-205 host gene as long noncoding RNA in prostate basal cell differentiation.
Cell line
View SamplesWe aimed at analyzing the transcriptome changes associated with MIR205HG knock-down in RWPE-1 cells
LEADeR role of miR-205 host gene as long noncoding RNA in prostate basal cell differentiation.
No sample metadata fields
View SamplesWe have identified desmoglein 2 (DSG2) as the primary high-affinity receptor used by adenovirus (Ad) serotypes Ad3, Ad7, and Ad14. These serotypes represent important human pathogens causing respiratory tract infections. In epithelial cells, adenovirus binding to DSG2 triggers events reminiscent of epithelial-to-mesenchymal transition, leading to transient opening of intercellular junctions. This improves access to receptors, e.g. CD46 and Her2/neu, that are trapped in intercellular junctions. In addition to complete virions, dodecahedral particles (PtDd) formed by viral penton and fiber in excess during viral replication, can trigger DSG2-mediated opening of intercellular junctions as shown by studies with recombinant Ad3 PtDd. Our findings shed light on adenovirus biology and pathogenesis and have implications for cancer therapy.
Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.
No sample metadata fields
View SamplesBackground: The ability of an organism to repair damages to DNA is inextricably linked to aging and cancer. We have characterized and compared the transcriptome of C. elegans mutants deficient in DNA base excision repair, nucleotide excision repair or both to elucidate the transcriptional changes incurred by the reduction of these repair pathways.
A two-tiered compensatory response to loss of DNA repair modulates aging and stress response pathways.
No sample metadata fields
View SamplesExpression data from wild-type FY4 and GCR2 deletion strain. Impact of the transcription factor Gcr2p on mRNA expression was investigated in the corresponding deletion strain in exponentially growing glucose minimal medium batch cultures.
Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.
No sample metadata fields
View SamplesThe impact on mRNA expression of the transcription factors Bas1, Pho2, Gcn4 and Gcr2p was investigated in the corresponding deletion strains during exponential growth in glucose minimal media batch cultures.
Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.
No sample metadata fields
View Samples