Landmark events occur in a coordinated manner during preimplantation development of the mammalian embryo, yet the regulatory network that orchestrates these events remains largely unknown.
An Oct4-Sall4-Nanog network controls developmental progression in the pre-implantation mouse embryo.
No sample metadata fields
View SamplesGene regulation at the maternal-embryonic transition in the pre-implantation mouse embryo is not well understood. We knock down Ccna2 to establish proof-of-concept that antisense morpholino oligonucleotides can be used to target specific genes. We applied this strategy to study Oct4 and discovered that Oct4 is required prior to blastocyst development. Specifically, gene expression is altered as early as the 2-cell stage in Oct4-knockdown embryos.
A novel and critical role for Oct4 as a regulator of the maternal-embryonic transition.
No sample metadata fields
View SamplesThe essential thiol antioxidant, glutathione (GSH) is recruited into the nucleus of mammalian cells early in cell proliferation, suggesting a key role of the nuclear thiol pool in cell cycle regulation. However, the functions of nuclear GSH (GSHn) and its integration with the cytoplasmic GSH (GSHc) pools in whole cell redox homeostasis and signaling are unknown. Here we show that GSH is recruited into the nucleus early in cell proliferation in Arabidopsis thaliana, confirming the requirement for localization of GSH in the nucleus as a universal feature of cell cycle regulation.
Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.
Age, Specimen part
View SamplesThe role of abscisic acid (ABA) signalling in the ascorbic acid (AA)-dependent control of plant growth and defence was determined using the vtc1 and vtc2 mutants, which have impaired ascorbic acid synthesis, and in the abi4 mutant that is impaired in ABA-signalling. ABA levels were increase in the mutants relative to the wild type (Col0). Like vtc1 the vtc2 mutants have a slow growth relative to Col0. However, the wild type phenotype is restored in the abi4vtc2 double mutant. Similarly, the sugar sensing phenotype of in the abi4 is reversed in the abi4vtc2 double mutant. The vtc1 and vtc2 leaf transcriptomes show up to 70 % homology with abi4. Of the transcripts that are altered in the mutants a relative to Col0, only a small number are reversed in the abi4vtc2 double mutants relative to either abi4 or vtc2. We conclude that AA controls growth via an ABA and abi4-dependent signalling pathway. The vtc and abi4 mutants have enhanced glutathione levels and common redox signalling pathways leading to similar gene expression patterns.
The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.
Age, Specimen part
View SamplesThe role of abscisic acid (ABA) signalling in the ascorbic acid (AA)-dependent control of plant growth and defence was determined using the vtc1 and vtc2 mutants, which have impaired ascorbic acid synthesis, and in the abi4 mutant that is impaired in ABA-signalling. ABA levels were increase in the mutants relative to the wild type (Col0). Like vtc1 the vtc2 mutants have a slow growth relative to Col0. However, the wild type phenotype is restored in the abi4vtc2 double mutant. Similarly, the sugar sensing phenotype of in the abi4 is reversed in the abi4vtc2 double mutant. The vtc1 and vtc2 leaf transcriptomes show up to 70 % homology with abi4. Of the transcripts that are altered in the mutants a relative to Col0, only a small number are reversed in the abi4vtc2 double mutants relative to either abi4 or vtc2. We conclude that AA controls growth via an ABA and abi4-dependent signalling pathway. The vtc and abi4 mutants have enhanced glutathione levels and common redox signalling pathways leading to similar gene expression patterns.
The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.
Age, Specimen part
View SamplesA better understanding of molecular changes during oral tumorigenesis may help defining new personalized prevention strategies. In order to test this hypothesis, we analyzed whole-genome expression changes in a murine model of oral carcinogenesis, induced by an oral carcinogen (4-NQO)
The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer.
Sex, Specimen part
View Samples