With a model mimicking GBM tumor cell dispersal, transcriptome changes between core (immotile) and dispersive (motile) cells were analyzed. Many genes are differentially expressed between these populations. This study focused on the genes that are significantly upregulated in dispersive cells. Besides gene sets related with the cell cycle and cell survival, epithelial to mesenchymal transition gene set is upregulated in dispersive cells. In this gene set, this study identified SERPINE1 gene as an important regulator of GBM cell dispersal. Overall design: Examination of core and dispersive populations' transcriptome during U373 cell spheroid dispersal. 2 sets of samples were prepared each for core and dispersive cells.
Identification of <i>SERPINE1</i> as a Regulator of Glioblastoma Cell Dispersal with Transcriptome Profiling.
Cell line, Subject
View SamplesLeukemia stem cells (LSCs) are found in most aggressive myeloid diseases and contribute to therapeutic resistance. Genetic and epigenetic alterations cause a dysregulated developmental program in leukemia. The MSI2 RNA binding protein has been previously shown to predict poor survival in leukemia. We demonstrate that the conditional deletion of Msi2 results in delayed leukemogenesis, reduced disease burden and a loss of LSC function. Gene expression profiling of the Msi2 ablated LSCs demonstrates a loss of the HSC/LSC and an increase in the differentiation program. The gene signature from the Msi2 deleted LSCs correlates with survival in AML patients. MSI2’s maintains the MLL self-renewal program by interacting with and retaining efficient translation of Hoxa9, Myc and Ikzf2. We further demonstrate that shRNA depletion of the MLL target gene Ikzf2 also contributes to MLL leukemia cell survival. Our data provides evidence that MSI2 controls efficient translation of the oncogenic LSC self-renewal program and a rationale for clinically targeting MSI2 in myeloid leukemia. Overall design: RNA-Seq was performed on sorted c-Kit high leukemic cells from 2 Msi2 -/- and 2 Msi2 f/f mice.
Musashi2 sustains the mixed-lineage leukemia-driven stem cell regulatory program.
No sample metadata fields
View SamplesTranscriptional profiling of Murine BaF3 cells infected with MPLW515L grown under either normal conditions (Naive) or in 0.8 uM INCB18424 for 4-6 weeks (Persistent). Naive and Persistent cells were then treated with either DMSO (Control) or 0.8 uM INCB18424 for 4 hours. Goal was to determine transcriptional changes conditioned upon sensitivity/resistance of BaF3 MPLW515L mutants to JAK1/2 specific inhibitor.
Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy.
Disease, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Functional screen of MSI2 interactors identifies an essential role for SYNCRIP in myeloid leukemia stem cells.
Specimen part, Cell line
View SamplesHCN4 channels are the major HCN channel isoform expressed in the sinoatrial node (SAN) and play a key role in cardiac pacemaking. We have characterized the gene expression profile in the SAN of adult mice expressing cAMP-insensitive HCN4 channels (HCN4FEA mice) in comparison to WT mice.
cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells.
Sex, Specimen part
View SamplesIn this dataset, we included expression data obtained from 30 resected human PDAC tumors, to examine what genes are differentially expressed in different cohorts that might lead to various outcomes
Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer.
Specimen part
View Samples