refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 46 results
Sort by

Filters

Technology

Platform

accession-icon GSE107458
Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE107446
Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes [expression]
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Primary cell cultures were isolated from KrasG12D-driven, PiggyBac transposon-transposase pancreatic cancer cell cultures and subjected to microarray-based expression profiling for the investigation of expression profiles.

Publication Title

Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27630
The transcription factor Otx2 regulates choroid plexus development and function
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The choroid plexuses (ChPs) are the main regulators of cerebrospinal fluid (CSF) composition and thereby also control the composition of a principal source of signaling molecules that is in direct contact with neural stem cells in the developing brain. The regulators of ChP development mediating the acquisition of a fate that differs from the neighboring neuroepithelial cells are poorly understood. Here, we demonstrate in mice a crucial role for the transcription factor Otx2 in the development and maintenance of ChP cells. Deletion of Otx2 by the Otx2-CreERT2 driver line at E9 resulted in a lack of all ChPs, whereas deletion by the Gdf7-Cre driver line affected predominately the hindbrain ChP, which was reduced in size, primarily owing to an increase in apoptosis upon Otx2 deletion. Strikingly, Otx2 was still required for the maintenance of hindbrain ChP cells at later stages when Otx2 deletion was induced at E15, demonstrating a central role of Otx2 in ChP development and maintenance. Moreover, the predominant defects in the hindbrain ChP mediated by Gdf7-Cre deletion of Otx2 revealed its key role in regulating early CSF composition, which was altered in protein content, including the levels of Wnt4 and the Wnt modulator Tgm2. Accordingly, proliferation and Wnt signaling levels were increased in the distant cerebral cortex, suggesting a role of the hindbrain ChP in regulating CSF composition, including key signaling molecules. Thus, Otx2 acts as a master regulator of ChP development, thereby influencing one of the principal sources of signaling in the developing brain, the CSF.

Publication Title

The transcription factor Otx2 regulates choroid plexus development and function.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE19240
Expression profile of IL-1beta stimulated and non-stimulated endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Complete identification of the bone marrow niche remains one of the most progressing fields. Attempts to identify soluble factors involved in stem cell renewal have been less successful. We have previously shown that endothelial cells (EC) can induce the long-term proliferation of hematopoietic progenitor cells (HPC), especially when they had been subjected to an inflammatory stimulus like interleukins (IL) 1.

Publication Title

Interleukin 32 promotes hematopoietic progenitor expansion and attenuates bone marrow cytotoxicity.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon SRP078915
Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration [E16VZ]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

In order to understand if early epigenetic mechanisms instruct the long-term behaviour of neural stem cells (NSCs) and their progeny, we examined the protein Uhrf1 as it is highly expressed in NSCs of the developing brain and rapidly downregulated upon differentiation. Conditional deletion of Uhrf1 in the developing cerebral cortex resulted in rather normal proliferation and neurogenesis but severe postnatal neurodegeneration. During development, deletion of Uhrf1 resulted in global DNA hypomethylation with a strong activation of the IAP family of endogenous retroviral elements, accompanied by an increase in hydroxy methyl cytosine. Downregulation of Tet enzymes rescued the IAP activation in Uhrf1 cKO cells, suggesting an antagonistic interplay between Uhrf1 and Tet on IAP regulation. As IAP upregulation persists into postnatal stages in the conditional Uhrf1 KO mice, our data show the lack of means to repress IAPs in differentiating neurons that normally never express Uhrf1. The high load of viral proteins and other transcriptional dysregulation ultimately lead to extensive postnatal neurodegeneration. Taken together, these data show that early developmental NSC factors can have long-term effects in neuronal differentiation and survival. Moreover, it highlights how specific the consequences of widespread changes in DNA methylation are for certain classes of retroviral elements. Overall design: Transcriptome analysis in control vs. Uhrf1-deficient brain

Publication Title

Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP078910
Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration [E16]
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

In order to understand if early epigenetic mechanisms instruct the long-term behaviour of neural stem cells (NSCs) and their progeny, we examined the protein Uhrf1 as it is highly expressed in NSCs of the developing brain and rapidly downregulated upon differentiation. Conditional deletion of Uhrf1 in the developing cerebral cortex resulted in rather normal proliferation and neurogenesis but severe postnatal neurodegeneration. During development, deletion of Uhrf1 resulted in global DNA hypomethylation with a strong activation of the IAP family of endogenous retroviral elements, accompanied by an increase in hydroxy methyl cytosine. Downregulation of Tet enzymes rescued the IAP activation in Uhrf1 cKO cells, suggesting an antagonistic interplay between Uhrf1 and Tet on IAP regulation. As IAP upregulation persists into postnatal stages in the conditional Uhrf1 KO mice, our data show the lack of means to repress IAPs in differentiating neurons that normally never express Uhrf1. The high load of viral proteins and other transcriptional dysregulation ultimately lead to extensive postnatal neurodegeneration. Taken together, these data show that early developmental NSC factors can have long-term effects in neuronal differentiation and survival. Moreover, it highlights how specific the consequences of widespread changes in DNA methylation are for certain classes of retroviral elements. Overall design: Transcriptome analysis in control vs. Uhrf1-deficient brain

Publication Title

Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE35260
Functional dissection of the Paired domain of Pax6 distinct roles of subdomains in neurogenesis and proliferation
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The transcription factor Pax6 acts as a key developmental regulator in various organs. In the developing brain Pax6 regulates patterning, neurogenesis and proliferation, but how these diverse effects are mediated at the molecular level is not well understood. As Pax6 regulates forebrain development including neurogenesis, proliferation and patterning, almost exclusively by one of its DNA-binding domains, the bipartite paired domain, we examined the role of its respective DNA-binding subdomains (PAI and RED). Using mice with point mutations in the PAI (Pax6Leca4, N50K) and RED (Pax6Leca2, R128C) subdomains we unravelled opposing roles of mutations in these subdomains in regulating genes that control proliferation in the developing cerebral cortex.

Publication Title

Functional dissection of the paired domain of Pax6 reveals molecular mechanisms of coordinating neurogenesis and proliferation.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE60389
Transcriptional mechanisms of proneural factors and REST in regulating neuronal reprogramming of astrocytes
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Reprogramming offers the possibility to study cell fate acquisitions otherwise difficult to address in vivo. By monitoring the dynamics of gene expression during direct reprogramming of astrocytes into different neuronal subtypes via the activation of Neurog2 and Ascl1, we demonstrate that these proneural factors control largely different neurogenic programs. Among the cascades induced, however, we identified a common subset of transcription factors required for both Neurog2- and Ascl1-induced reprogramming, and combinations of these factors comprising NeuroD4 were sufficient to generate functional neurons. Notably, during astrocyte maturation REST prevents Neurog2 from binding to the NeuroD4 locus that becomes then enriched with histone H4 lysine 20 tri-methylation.

Publication Title

Transcriptional Mechanisms of Proneural Factors and REST in Regulating Neuronal Reprogramming of Astrocytes.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE8034
Prospective isolation of functionally distinct radial glial subtypes - lineage and transcriptome analysis
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Since the discovery of radial glia as the source of neurons, their heterogeneity in regard to neurogenesis has been described by clonal and time-lapse analysis in vitro. However, the molecular determinants specifying neurogenic radial glia differently from radial glia that mostly self-renew remain ill-defined. Here, we isolated two radial glial subsets that co-exist at mid-neurogenesis in the developing cerebral cortex and their immediate progeny. While one subset generates neurons directly, the other is largely non-neurogenic but also gives rise to Tbr2-positive basal precursors, thereby contributing indirectly to neurogenesis. Isolation of

Publication Title

Prospective isolation of functionally distinct radial glial subtypes--lineage and transcriptome analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40582
TRNP1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Evolution of the mammalian brain encompassed a remarkable increase in size of cerebral cortex, including tangential and radial expansion, but the mechanisms underlying these key parameters are still largely unknown. Here, we identified the novel DNA associated protein TRNP1 as a regulator of cerebral cortical expansion in both these dimensions. Gain and loss of function experiments in the mouse cerebral cortex in vivo demonstrate that high Trnp1 levels promote neural stem cell self-renewal and tangential expansion, while lower levels promote radial expansion resulting in a potent increase in the generation of intermediate progenitors and outer radial glial cells resulting in folding of the otherwise smooth murine cerebral cortex. Remarkably, TRNP1 expression levels exhibit regional differences also in the cerebral cortex of human fetuses anticipating radial or tangential expansion respectively. Thus, the dynamic regulation of TRNP1 is critical to regulate tangential and radial expansion of the cerebral cortex in mammals.

Publication Title

Prospective isolation of functionally distinct radial glial subtypes--lineage and transcriptome analysis.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact