We describe a method for isolating RNA suitable for high-throughput RNA sequencing (RNA-seq) from small numbers of fluorescently labeled cells isolated from live zebrafish (Danio rerio) embryos without using costly, commercially available columns. This method ensures high cell viability after dissociation and suspension of cells and gives a very high yield of intact RNA. We demonstrate the utility of our new protocol by isolating RNA from fluorescence activated cell sorted (FAC sorted) pineal complex neurons in wild-type and tbx2b knockdown embryos at 24 hours post fertilization. Tbx2b is a transcription factor required for pineal complex formation. We describe a bioinformatics pipeline used to analyze differential expression following high-throughput sequencing and demonstrate the validity of our results using in situ hybridization of differentially expressed transcripts. This protocol brings modern transcriptome analysis to the study of small cell populations in zebrafish. Overall design: Differential expression analysis of mRNA levels in a single time-point (24 hpf) between wild-type and Tbx2b deficient FAC sorted pineal complex cells
Identification of differentially expressed genes during development of the zebrafish pineal complex using RNA sequencing.
No sample metadata fields
View SamplesRNAPII pausing/termination shortly after initiation is a hallmark of gene regulation. However, the molecular mechanisms involved are still to be uncovered. Here, we show that NELF interacts with Integrator complex subunits (INTScom) forming a stable complex with RNPII and Spt5. The interaction between NELF and INTScom subunits is RNA and DNA independent. Using both HIV-1 promoter and genome wide analyses, we demonstrate that Integrator subunits specifically control NELF-mediated RNAPII pause/release at coding genes. The strength of RNAPII pausing is determined by the nature of the NELF-associated complex. Interestingly, in addition to controlling RNAPII pause release INTS11 catalytic subunit of the INTScom is required for the synthesis of full length mRNA. Finally, INTScom-target genes are enriched in HIV-1 TAR/ NELF-binding element and in a 3'box sequence required for snRNA biogenesis. Revealing these unexpected functions of INTScom in regulating RNAPII pausing/release and completion of mRNA synthesis of NELF-target genes will contribute to our understanding of the gene expression cycle. Overall design: Genome-wide expression in HeLa cells in the absence of Integrator 11, or NELF or mock (control) depleted by strand-specific RNASeq (Illumina)
Integrator complex regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes.
No sample metadata fields
View SamplesThe Drosophila insulator-binding proteins (IBPs) dCTCF/Beaf32 mark the physical borders of chromosomal domains involving co-factors that participate in long-range interactions. Chromosomal borders are further enriched in specific histone modifications yet the implication of histone modifiers and nucleosome dynamics remains largely unknown in such context. Here, we show that IBP depletion impairs nucleosome dynamics over genes flanked by their binding sites. Biochemical purification identifies a key histone methyltransferase of H3K36, NSD/dMes-4, as a novel co-factor of IBPs involved in chromatin accessibility, which specifically co-regulates hundreds of genes flanked by Beaf32/dCTCF. dMes-4 presets chromatin before the recruitment of transcriptional activators including DREF that triggers Set2/Hypb-mediated H3K36me3, RNA splicing and nucleosome positioning. Our results unveil a model for how IBPs regulate gene expression and nucleosome dynamics through NSD/dMes-4, which may contribute to regulate H3K27me3 spreading. Together, our data suggest a division of labor for how IBPs may dynamically regulate chromatin organization depending on distinct co-factors. Overall design: mRNA profiles of Beaf32-depleted or Wild-Type control Drosophila S2 cells by RNASeq (Illumina)
Insulators recruit histone methyltransferase dMes4 to regulate chromatin of flanking genes.
Cell line, Subject
View SamplesWe collected and compared samples from the cohort consisted of six groups as follows: methotrexate (MTX) monotherapy, combination therapy of MTX and infliximab (IFX), tocilizumab (TCZ) monotherapy, age- and gender-matched HC, and a small number of synovial fluid samples. In order to reduce variation due to the proportion of cells at each developmental stage, we performed transcriptome analysis after sorting CD4+ and CD8+ T cells according to developmental stage. We created a gene list that was significantly expressed in RA T cells, and revealed that pathways such as mTORC1, IL-2-stat5, Cell cycle and interferon-related genes were significantly enriched among them. Overall design: Examination among healthy controls and patients with rheumatoid arthritis, including before and after treatment
Multi-dimensional analysis identified rheumatoid arthritis-driving pathway in human T cell.
Sex, Age, Specimen part, Disease, Subject
View SamplesWe compared whole CD4+ and CD8+ T cells from frozen PBMC samples that were collected before and after treatment initiation of each patient with rheumatoid arthritis. Lists consisting of 858 and 950 differentially expressed genes were created from CD4 and CD8, respectively, and these were used for enrichment analysis. As a result, we found that certain pathways were downregulated after TCZ treatment in both CD4+ and CD8+ T cells, including mechanistic target of rapamycin complex 1 (mTORC1) signaling, the IL-2 pathway, and IFN-related genes. Overall design: Examination between before and after tocilizumab treatment of CD4 and CD8 T cell in rheumatoid arthritis patients
Multi-dimensional analysis identified rheumatoid arthritis-driving pathway in human T cell.
Sex, Age, Specimen part, Disease, Subject
View SamplesWe analyzed publicly available mucosal gene expression data from Crohn''s disease (CD) patients pre- and post-infliximab therapy and found that a series of gene expression signature that remains abnormal even if patients achieve clinical remission. Using CMap approach to discover novel therapeutic target for untreatable mechanism of anti-TNFa mAb therapy, we have identified MEK inhibitor exhibiting negatively-correlated effects on reference signature match infliximab therapy untreatable signature. Our findings provide the rationale for testing MEK inhibitor to identify a novel mechanism of action for CD. Gene expression profile was performed to analyze the gene modulation induced by a highly selective MEK inhibitor, and to evaluate whether it normalized reference residual CD signature in vitro. Overall design: LoVo, a human colorectal cancer cell line, was treated with MEK inhibitor for 24 hours across ten dose response conditions (0.03–1,000 nM), and amplicon sequencing was performed on the Ion Torrent platform. Effects of MEK inhibitor were compared with that of DMSO-treated control. MEK inhibitor (compound 33 in Bioorg. Med. Chem. Lett. 22 (2012) 2411 2414))
Gene Signature-Based Approach Identified MEK1/2 as a Potential Target Associated With Relapse After Anti-TNFα Treatment for Crohn's Disease.
Disease, Cell line, Treatment, Subject
View SamplesWe analyzed publicly available mucosal gene expression data from Crohn''s disease (CD) patients pre- and post-infliximab therapy and found that a series of gene expression signature that remains abnormal even if patients achieve clinical remission. Using CMap approach to discover novel therapeutic target for untreatable mechanism of anti-TNFa mAb therapy, we have identified MEK inhibitor exhibiting negatively-correlated effects on reference signature match infliximab therapy untreatable signature. Our findings provide the rationale for testing MEK inhibitor to identify a novel mechanism of action for CD. Using an activated T cell trasnfer colitis model, a highly selective MEK inhibitor showed therapeutic efficacy and improved the histological changes. To dissect molecular mechanisms, we performed global gene expression profile by RNA-sequencing on the Ion Torrent platform to identify broad scale changes in gene expression treated with MEK inhibitor compared to anti-TNFa mAb. Overall design: Splenocytes from BALB/c female mice were activated with Concanavalin A (4 µg/mL), and recombinant human IL-2 (10 ng/mL, R&D systems) for 3 days. CD4+ T cells were isolated by MACS separation systems, and then 2 x105 activated CD4+ T cells were intravenously injected into female SCID mice (day 0). At day 17, diarrhea score for stool consistency was graded and equally divided into 5 groups as follows: vehicle control, enteric MEK inhibitor microparticles (MPs) at 0.3 mg/kg and at 1 mg/kg, isotype antibody (Isotype mAb) and anti-TNFa antibody (Anti-TNFa mAb). Enteric MEK inhibitor MPs were orally administered once a day from day 17 to day 27. Isotype mAb and anti-TNFa mAb were intraperitoneally injected every 4 days from day 17 at 0.1 mg/mouse. Total RNA from individual cohorts were extracted from the distal part of the colon at day 28, and whole transcriptome sequencing was performed on the Ion Torrent platform. MEK inhibitor (compound 33 in Bioorg. Med. Chem. Lett. 22 (2012) 2411 2414))
Gene Signature-Based Approach Identified MEK1/2 as a Potential Target Associated With Relapse After Anti-TNFα Treatment for Crohn's Disease.
Specimen part, Cell line, Treatment, Subject
View SamplesNuclear receptor subfamily 1, group D, member 1 (Nr1d1) (also known as Rev-erb alpha) has been linked to circadian rhythm regulation, mood-related behavior, and disorders associated with social deficits. Recent work from our laboratory found striking decreases in Nr1d1 in nucleus accumbens (NAc) in the maternal condition and indirect evidence that Nr1d1 was interacting with numerous addiction and reward-related genes to modulate social reward. In this study, we applied our insights from the maternal state to non-parental adult mice to determine whether decreases in Nr1d1 expression in NAc via adeno-associated viral (AAV) vectors and short hairpin RNA (shRNA)-mediated gene knockdown were sufficient to modulate social reward and mood-related behaviors. We also used microarray analysis of to identify gene expression alterations induced by the lowering of Nr1d1 expression.
The circadian gene Nr1d1 in the mouse nucleus accumbens modulates sociability and anxiety-related behavior.
Sex, Age, Specimen part
View SamplesBipolar disorder (BPD) is a debilitating heritable psychiatric disorder. Contemporary models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain, termed Madison (MSN), which naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR). We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: Epor, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Using a novel genomic enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21-22, 12q24, 16q24, and 17q25. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes.
A new mouse model for mania shares genetic correlates with human bipolar disorder.
Sex, Specimen part
View SamplesMotherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC) is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET) indicated that postpartum (relative to virgin) NAC gene expression profile was significantly enriched for genes related to addiction and reward in 5 of 5 independently curated databases (e.g., Malacards, Phenopedia). Over 100 addiction/reward related genes were identified and these included: Per1, Per2, Arc, Homer2, Creb1, Grm3, Fosb, Gabrb3, Adra2a, Ntrk2, Cry1, Penk, Cartpt, Adcy1, Npy1r, Htr1a, Drd1a, Gria1, and Pdyn. ToppCluster analysis found maternal NAC expression profile to be significantly enriched for genes related to the drug action of nicotine, ketamine, and dronabinol. Pathway analysis indicated postpartum NAC as enriched for RNA processing, CNS development/differentiation, and transcriptional regulation. Weighted Gene Coexpression Network Analysis identified possible networks for transcription factors, including Nr1d1, Per2, Fosb, Egr1, and Nr4a1. The postpartum state involves increased risk for mental health disorders and MSET analysis indicated postpartum NAC to be enriched for genes related to depression, bipolar disorder, and schizophrenia. Mental health related genes included: Fabp7, Grm3, Penk, and Nr1d1. We confirmed via quantitative PCR Nr1d1, Per2, Grm3, Penk, Drd1a, and Pdyn. This study indicates for the first time that postpartum NAC involves large scale gene expression alterations linked to addiction and reward. Because the postpartum state also involves decreased response to drugs, the findings could provide insights into how to mitigate addictions.
Addiction and reward-related genes show altered expression in the postpartum nucleus accumbens.
Specimen part
View Samples