Background: Gq-coupled G protein-coupled receptors (GPCR) mediate the actions of a variety of messengers that are key regulators of cardiovascular function. Enhanced Gaq-mediated signaling plays an important role in cardiac hypertrophy and in the transition to heart failure. We have recently described that Gaq acts as an adaptor protein that facilitates PKCz-mediated activation of ERK5 in epithelial cells. Since the ERK5 cascade is known to be involved in cardiac hypertrophy, we have investigated the potential relevance of this pathway in Gq-dependent signaling in cardiac cells.
Protein kinase C (PKC)ζ-mediated Gαq stimulation of ERK5 protein pathway in cardiomyocytes and cardiac fibroblasts.
Sex, Age, Specimen part
View SamplesCompare the behaviour of two populations of non-hematopoetic stem cells (MSC and MAPC) isolated from human bone marrow. The effect of culture conditions on the behaviour of MSC was also characterised by isolating MSC and then culturing the cells for 96h in MAPC growth conditions
Validation of COL11A1/procollagen 11A1 expression in TGF-β1-activated immortalised human mesenchymal cells and in stromal cells of human colon adenocarcinoma.
Age, Specimen part
View SamplesWe used Affymetrix microarrays to investigate gene expression changes in PBMCs isolated from male patients ongoing secondary prevention of CVD to determine significant modulatory effects that may have been induced by the intake of an initial dose of 8 mg of resveratrol-enriched grape extract for 6 months and then, 16 mg for a further 6 months.
One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease.
Sex, Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse.
Sex, Age, Specimen part
View SamplesMultiple myeloma (MM) remains incurable despite the introduction of novel agents and a relapsing course is observed in the majority of patients. Although the development of genomic technologies has greatly improved our understanding of MM pathogenesis, the mechanisms underlying relapse have been less investigated. In this study, an integrative analysis of DNA copy number, DNA methylation and gene expression was conducted in matched diagnosis and relapse samples from 17 MM patients. Overall, the acquisition of abnormalities at relapse was much more frequent than the lost of lesions present at diagnosis, and DNA losses were significantly more frequent at relapse than in diagnosis samples. Interestingly, copy number abnormalities involving more than 100 Mb of DNA at relapse significantly impact the gene expression of these samples, provoking a particular deregulation of IL-8 pathway. On the contrary, no relevant modifications of gene expression were observed in those samples with less than 100 Mb affected by chromosomal changes. Although different statistical approaches were used to uncover genes whose abnormal expression at relapse was regulated by DNA methylation, only two genes significantly deregulated in relapse samples (SORL1 and GLT1D1) showed a negative methylation-expression correlation. A deeper analysis demonstrated that DNA methylation was involved in regulation of SORL1 expression in MM. Finally, relevant changes in gene expression observed in relapse samples, such us downregulation of CD27 and P2RY8, were not apparently preceded by alterations in corresponding DNA. Taken together, these results showed that genomic heterogeneity, both at the DNA and RNA level, is a hallmark of MM transition from diagnosis to relapse.
Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse.
Sex, Specimen part
View SamplesDNA microarray technology is a powerfull tool for genome-wide gene expression analysis of biological samples. Here we review the methodology for expression profiling analysis of skin tissue or purified keratinocytes from mice. We explained the methodology and protocols for RNA preservation and purification, RNA quality and integrity tests, and DNA microarray technology types that can be used. Furthermore, using a dataset of mice samples, we explained how to perform chip raw data preprocessing and normalization, differential expression analysis, as well as gene-clustering and funcional analysis of gene deregulation.
Gene expression profiling of mouse epidermal keratinocytes.
Age, Specimen part
View SamplesThe weaning period consist of a critical postnatal window for structural and physiologic maturation of rat beta cells. To investigate transcriptome changes involved in the maturation of beta cells neighboring this period we performed microarray analysis in FACS beta cell enriched populations to detail the global programme of gene expression to identify its changes during this process.
Transcriptome landmarks of the functional maturity of rat beta-cells, from lactation to adulthood.
Sex
View SamplesWe used microarrays to investigate gene expression changes in tumor-bearing Pax5+/- mice
Infection Exposure is a Causal Factor in B-cell Precursor Acute Lymphoblastic Leukemia as a Result of Pax5-Inherited Susceptibility.
Specimen part
View SamplesA permantly active form of the oncogene Akt was expressed in the keratinocytes of the basal proliferative layer of the epidermis. Stem cells of the hair follicle expressing the cell surface marker CD34 were isolated. RNA form the CD34(+) and CD34(-) keratinocytes was extracted and and hybridized to Mouse Genome 430 2.0 Affymetrix arrays.
Akt signaling leads to stem cell activation and promotes tumor development in epidermis.
Specimen part
View SamplesThe specific ablation of Rb1 gene in epidermis (RbF/F;K14cre) promotes proliferation and altered differentiation but does not produce spontaneous tumour development. These phenotypic changes are associated with increased expression of E2F members and E2F-dependent transcriptional activity. Here, we have focused on the possible dependence on E2F1 gene function. We have generated mice that lack Rb1 in epidermis in an inducible manner (RbF/F;K14creERTM). These mice are indistinguishable from those lacking pRb in this tissue in a constitutive manner (RbF/F;K14cre). In an E2F1-null background (RbF/F;K14creERTM; E2F1-/- mice), the phenotype due to acute Rb1 loss is not ameliorated by E2F1 loss, but rather exacerbated, indicating that pRb functions in epidermis do not rely solely on E2F1. On the other hand, RbF/F;K14creERTM;E2F1-/- mice develope spontaneous epidermal tumours of hair follicle origin with high incidence. These tumours, which retain a functional p19arf/p53 axis, also show aberrant activation of catenin/Wnt pathway. Gene expression studies revealed that these tumours display relevant similarities with specific human tumours. These data demonstrate that the Rb/E2F1 axis exerts essential functions not only in maintaining epidermal homeostasis, but also in suppressing tumour development in epidermis, and that the disruption of this pathway may induce tumour progression through specific alteration of developmental programs.
E2F1 loss induces spontaneous tumour development in Rb-deficient epidermis.
No sample metadata fields
View Samples