Cellular responses to carcinogens are typically studied in transformed cell lines, which do not reflect the physiological status of normal tissues. To address this question, we have characterized the transcriptional program and cellular responses of normal human lung WI-38 fibroblasts upon exposure to the ultimate carcinogen benzo[a]pyrene diol epoxide (BPDE). Exposure to BPDE induces a strong inflammatory response in WI-38 primary fibroblasts. Whole-genome microarray analysis shows induction of several genes related to the production of inflammatory factors, including those that encode interleukins (ILs), growth factors, and enzymes related to prostaglandin synthesis and signaling. This is the first demonstration that a strong inflammatory response is triggered in primary fibroblasts in response to a reactive diol epoxide derived from a polycyclic aromatic hydrocarbon.
Benzo[a]pyrene diol epoxide stimulates an inflammatory response in normal human lung fibroblasts through a p53 and JNK mediated pathway.
Specimen part
View SamplesRecent studies have been successful at utilizing ectopic expression of transcription factors to generate induced cardiomyocytes (iCMs) from fibroblasts, albeit at a low frequency in vitro. This work investigates the influence of small molecules that have been previously reported to improve differentiation to cardiomyocytes as well as reprogramming to iPSCs in conjunction with ectopic expression of the transcription factors Hand2, Nkx2.5, Gata4, Mef2C, and Tbx5 on the conversion to functional iCMs. We utilized a reporter system in which the calcium indicator GCaMP is driven by the cardiac Troponin T promoter to quantify iCM yield. The TGF inhibitor, SB431542 (SB), was identified as a small molecule capable of increasing the conversion of both mouse embryonic fibroblasts and adult cardiac fibroblasts to iCMs up to ~5 fold. Further characterization revealed that inhibition of TGF by SB early in the reprogramming process led to the greatest increase in conversion of fibroblasts to iCMs in a dose-responsive manner. Global transcriptional analysis at Day 3 post-induction of the transcription factors revealed an increased expression of genes associated with the development of cardiac muscle in the presence of SB compared to the vehicle control. Incorporation of SB in the reprogramming process increases the efficiency of iCM generation, one of the major goals necessary to enable the use of iCMs for discovery-based applications and for the clinic.
Inhibition of TGFβ signaling increases direct conversion of fibroblasts to induced cardiomyocytes.
Specimen part, Treatment
View SamplesCardiac disease accounts for the largest proportion of adult mortality and morbidity in the industrialized world. However, progress toward improved clinical treatments is hampered by an incomplete understanding of the genetic programs controlling early cardiogenesis. To better understand this process, we set out to identify genes whose expression is enriched within early cardiac fated populations, obtaining the transcriptional signatures of mouse embryonic stem cells (mESCs) differentiating along a cardiac path.
Efficient array-based identification of novel cardiac genes through differentiation of mouse ESCs.
No sample metadata fields
View SamplesIn mammals, a key transition in spermatogenesis is the exit from spermatogonial differentiation and mitotic proliferation and the entry into spermatocyte differentiation and meiosis. Although several genes that regulate this transition have been identified, how it is controlled and coordinated remains poorly understood. Here we examine the role in male gametogenesis of the Doublesex-related gene Dmrt6 (Dmrtb1) and find that Dmrt6 plays a critical role in directing germ cells through the mitotic to meiotic germ cell transition. DMRT6 protein is expressed in late mitotic spermatogonia. In mice of the C57BL/6J strain a null mutation in Dmrt6 disrupts spermatogonial differentiation, causing expression in inappropriate cell types of spermatogonial differentiation factors including SOHLH1, SOHLH2 and DMRT1 and the meiotic initiation factor STRA8 and causing most late spermatogonia to undergo apoptosis. In mice of the 129Sv background, most Dmrt6 mutant spermatogonia can complete differentiation and enter meiosis, but they show defects in chromosome pairing, establishment of the XY body, and processing of recombination foci, and mainly arrest in mid-pachynema. mRNA profiling of Dmrt6 mutant testes together with DMRT6 ChIP-seq suggest that DMRT6 represses genes involved in spermatogonial differentiation and activates genes required for meiotic prophase. Our results indicate that Dmrt6 plays a key role in coordinating the transition in gametogenic programs from spermatogonial differentiation and mitosis to spermatocyte development and meiosis. Overall design: Six samples for RNA-Seq with three biological replicates in each group. Two samples for ChIP-Seq (one input and one ChIP).
The mammalian Doublesex homolog DMRT6 coordinates the transition between mitotic and meiotic developmental programs during spermatogenesis.
No sample metadata fields
View SamplesMouse embryonic stem cells can differentiate in vitro into spontaneously contracting cardiomyocytes. The main objective of this study was to investigate cardiogenesis in cultures of differentiating embryonic stem cells (ESCs) and to determine how closely it mimics in vivo cardiac development. We identified and isolated a population of cardiac progenitor cells (CPCs) through the use of a reporter DNA construct that allowed the expression of a selectable marker under the control of the Nkx2.5 enhancer. We proceeded to characterize these CPCs by examining their capacity to differentiate into cardiomyocytes and to proliferate. We then performed a large-scale temporal microarray expression analysis in order to identify genes that are uniquely upregulated or downregulated in the CPC population. We determined that the transcriptional profile of the mESC derived CPCs was consistent with pathways known to be active during embryonic cardiac development. We conclude that in vitro differentiation of mESCs recapitulates the early steps of mouse cardiac development.
Mouse ES cell-derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes.
No sample metadata fields
View SamplesMouse ESCs depleted of the epigenetic modifying enzyme Usp22 fail to differentiate properly. Ectopic expresison of Usp22 results in spontaneous differnetiation.
The epigenetic modifier ubiquitin-specific protease 22 (USP22) regulates embryonic stem cell differentiation via transcriptional repression of sex-determining region Y-box 2 (SOX2).
Cell line, Treatment
View SamplesThis study relates to pregnancy outcome after assisted reproduction of fertility-classified cattle. The aim is to investigate how the uterine environment impacts and programs conceptus survival and development. The study found that ripple effects of dysregulated conceptus-endometrial interactions elicit post-elongation pregnancy loss in subfertile animals during the implantation period. Overall design: Heifer cows classified as high fertile (HF), subfertile (SF), or infertile (IF) were investigated. The RNA-seq analysis was performed for endometrium samples at day 17 of pregnancy. For comparison, non-pregnant cows were included in the analysis. RNA from conceptus of HF and SF pregnant animals (day 17) were also included in the RNA-seq analysis. A total of 25 endometrium samples (5 non-pregnant of each fertilty group, 5 pregnant HF, and 5 pregnant SF) and 27 conceptus samples (10 SF and 17 HF) were used in the RNA-seq analysis.
Uterine influences on conceptus development in fertility-classified animals.
Specimen part, Subject
View SamplesThe goal of this study was to provide a global assessment of the host''s response to M. gallisepticum over a 7-day time course Overall design: Differential gene expression was assessed between Rlow infected and Hayflick''s only ''control chickens'' on days 1, 3, 5, and 7 (5 infected per day, 4 controls on day 1, 5 controls per days 3, 5, and 7), 39 total chickens assessed.
Transcriptional Profiling of the Chicken Tracheal Response to Virulent Mycoplasma gallisepticum Strain R<sub>low</sub>.
Subject, Time
View SamplesRetinoic acid (RA) is a potent inducer of cell differentiation and plays an essential role in sex-specific germ cell development in the mammalian gonad. RA is essential for male gametogenesis and hence fertility. However, RA can also disrupt sexual cell fate in somatic cells of the testis, promoting transdifferentiation of male Sertoli cells to female granulosa-like cells when the male sexual regulator Dmrt1 is absent. The feminizing ability of RA in the somatic testis suggests that RA might normally play a role in somatic cell differentiation or cell fate maintenance in the ovary. To test for this possibility we disrupted RA signaling in somatic cells of the early fetal ovary using three genetic strategies and one pharmaceutical approach. We found that deleting all three RA receptors (RARs) in the XX somatic gonad at the time of sex determination did not significantly affect ovarian differentiation, follicle development, or female fertility. Transcriptome analysis of adult triple mutant ovaries revealed remarkably little effect on gene expression in the absence of somatic RAR function. Likewise, deletion of three RA synthesis enzymes (Aldha1-3) at the time of sex determination did not masculinize the ovary. A dominant-negative RAR transgene altered granulosa cell proliferation, likely due to interference with a non-RA signaling pathway, but did not affect granulosa cell specification or fertility. Finally, culture of fetal XX gonads with an RAR antagonist blocked germ cell meiotic initiation but did not disrupt sex-biased gene expression. We conclude that RA signaling, although crucial in the ovary for meiotic initiation, is not required for granulosa cell specification, differentiation, or reproductive function. Overall design: Ovaries from six week old mice with five replicates in each of two genotypes were analyzed by RNA-Seq
Retinoic acid signaling is dispensable for somatic development and function in the mammalian ovary.
Age, Specimen part, Cell line, Subject
View SamplesDirect conversion of fibroblasts to induced cardiomyocytes (iCMs) has great potential for regenerative medicine. Recent publications have reported significant progress, but the evaluation of reprogramming has relied upon non-functional measures such as flow cytometry for cardiomyocyte markers or GFP expression driven by a cardiomyocyte-specific promoter. The issue is one of practicality: the most stringent measures - electrophysiology to detect cell excitation and the presence of spontaneously contracting myocytes - are not readily quantifiable in the large numbers of cells screened in reprogramming experiments. However, excitation and contraction are linked by a third functional characteristic of cardiomyocytes: the rhythmic oscillation of intracellular calcium levels. We set out to optimize direct conversion of fibroblasts to iCMs with a quantifiable calcium reporter to rapidly assess functional transdifferentiation. We constructed a reporter system in which the calcium indicator GCaMP is driven by the cardiomyocyte-specific Troponin T promoter. Using calcium activity as our primary outcome measure, we compared several published combinations of transcription factors along with novel combinations in mouse embryonic fibroblasts. The most effective combination consisted of Hand2, Nkx2.5, Gata4, Mef2c, and Tbx5 (HNGMT). This combination is >50-fold more efficient than GMT alone and produces iCMs with cardiomyocyte marker expression, robust calcium oscillation, and spontaneous beating that persists for weeks following inactivation of reprogramming factors. HNGMT is also significantly more effective than previously published factor combinations for the transdifferentiation of adult mouse cardiac fibroblasts to iCMs. Quantification of calcium function is a convenient and effective means for the identification and evaluation of cardiomyocytes generated by direct reprogramming. Using this stringent outcome measure, we conclude that HNGMT produces iCMs more efficiently than previously published methods.
Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success.
No sample metadata fields
View Samples