refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 454 results
Sort by

Filters

Technology

Platform

accession-icon SRP066860
3´-end sequencing of poly(A)+ RNA in wild-type Saccharomyces cerevisiae and nuclear exosome mutant strains
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The nuclear exosome performs critical functions in non-coding RNA processing, and in diverse surveillance functions including the quality control of mRNP formation, and in the removal of pervasive transcripts. Most non-coding RNAs and pervasive nascent transcripts are targeted by the Nrd1p-Nab3p-Sen1p (NNS) complex to terminate Pol II transcription coupled to nuclear exosome degradation or 3´-end trimming. Prior to nuclear exosome activity, the Trf4p-Air2p-Mtr4p polyadenylation complex adds an oligo-A tail to exosome substrates. Inactivating exosome activity stabilizes and lengthens these A-tails. We utilized high-throughput 3´-end poly(A)+ sequencing to identify at nucleotide resolution the 3´ ends targeted by the nuclear exosome, and determine the sites of NNS-dependent termination genome-wide. Overall design: 3´-end mapping of wild-type and various nuclear exosome mutant strains, either using gene knockouts or the anchor away system to conditionally deplete FRB-tagged proteins from the nucleus

Publication Title

Common genomic elements promote transcriptional and DNA replication roadblocks.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE9652
GATA4 is a direct activator of Cyclin D2 and is required for proliferation in 2nd heart field-derived myocardium
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The second heart field (SHF) comprises a population of mesodermal progenitor cells that are added to the nascent linear heart to give rise to the majority of the right ventricle, interventricular septum, and outflow tract of mammals and birds. The zinc finger transcription factor GATA4 functions as an integral member of the cardiac transcription factor network in the SHF and its derivatives. In addition to its role in cardiac differentiation, GATA4 is also required for cardiomyocyte replication, although the transcriptional targets of GATA4 required for proliferation have not been previously identified. In the present study, we disrupted Gata4 function exclusively in the SHF and its derivatives. Gata4 SHF knockout mice die by embryonic day 13.5 and exhibit hypoplasia of the right ventricular myocardium and interventricular septum and display profound ventricular septal defects. Loss of Gata4 function in the SHF results in decreased myocyte proliferation in the right ventricle, and we identify numerous cell cycle genes that are dependent on Gata4 by microarray analysis. We show that Gata4 is required for Cyclin D2 expression in the right ventricle and that the Cyclin D2 promoter is bound and activated by GATA4 via three consensus GATA binding sites. These findings establish Cyclin D2 as a direct transcriptional target of GATA4 and support a model in which GATA4 controls cardiomyocyte proliferation by coordinately regulating numerous cell cycle genes.

Publication Title

GATA4 is a direct transcriptional activator of cyclin D2 and Cdk4 and is required for cardiomyocyte proliferation in anterior heart field-derived myocardium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE76598
Profiling of nave and memory Tregs
  • organism-icon Homo sapiens
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Changes in Treg function are difficult to quantify due to the lack of Treg-exclusive markers in humans and the complexity of functional experiments. We sorted naive and memory human Tregs and conventional T cells, and identified genes that identify human Tregs regardless of their state of activation. We developed this Treg signature using Affymetrix human genome U133A 2.0 microarrays.

Publication Title

A Regulatory T-Cell Gene Signature Is a Specific and Sensitive Biomarker to Identify Children With New-Onset Type 1 Diabetes.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE7664
Analysis of human cells response to benzene metabolites
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

analyzed changes in cytokine/chemokine production and gene expression levels in, human peripheral blood mononuclear cells upon teratment with 15M,2,4-benzenetriol

Publication Title

Identification of human cell responses to benzene and benzene metabolites.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP052706
Rapamycin induces chromosome reorganization and increases cytokine production in normal human fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

We report the effects of Rapamycin treatment on the transcriptome of normal human dermal fibroblasts isolated from foreskin (designated 2DD). We sequenced mRNA from 2 replicates of proliferative (PRO) quiescent (QUI, serum starved) or treated with 500nM Rapamycin for 5 days (RAP). Comparative analyses with PRO transcripts a baseline indicate that genes that changed expression from Rapamycin treated fibroblasts are significantly different from those of quiescence cells. Rapamycin treated cells showed a significant enrichment for cytokines from the Il-6 cascade. Overall design: Examination of mRNAs from proliferative, quiescent (serum starvation) and Rapamycin (5oonM, 5days) treated 2DD normal human dermal/foreskin fibroblasts.

Publication Title

Concordance between RNA-sequencing data and DNA microarray data in transcriptome analysis of proliferative and quiescent fibroblasts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP187300
Disruption of the exocyst induces podocyte loss and dysfunction
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In this study we plan to compare the profiles of control sample (cultured podocytes) with the Exoc5 knock down in cutured podocytes to examine the differentially expressed genes. Overall design: We hope to identify the genes that are downregulated on knocking down Exoc5 in cultured human podocytes cells

Publication Title

Disruption of the exocyst induces podocyte loss and dysfunction.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE28887
Gene expression profile of Age associated B cells, Follicular B cells, and B1 cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We performed gene expression profile of different B cell populations found in old (18 months old) C57BL/6 female mouse (B1 cells were recovered from both young and old C57BL/6 mice). Mice were nave and healthy (no autoimmunity was detected at the time of the experiment).

Publication Title

Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c⁺ B-cell population is important for the development of autoimmunity.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE32272
Expression data from chick cochlea and utricle
  • organism-icon Gallus gallus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Inner ear auditory and vestibular tissues differ in their responses to mechanical stimuli.

Publication Title

Distinct energy metabolism of auditory and vestibular sensory epithelia revealed by quantitative mass spectrometry using MS2 intensity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE75834
Gene expression profile comparison of DC subsets
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To evaluate gene expression profiles on different dendritic cell subsets isolated from spleens of mice

Publication Title

CD28 Deficiency Enhances Type I IFN Production by Murine Plasmacytoid Dendritic Cells.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP185822
Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Development requires the cooperation of tissue-specific and ubiquitously expressed transcription factors, such as Sp-family members. However, the molecular details of how ubiquitous factors participate in developmental processes are still unclear. We previously showed that during the differentiation of embryonic stem cells lacking Sp1 DNA binding activity (Sp1deltaDBD/deltaDBD cells), early blood progenitors are formed. However, gene expression during differentiation becomes progressively deregulated and terminal differentiation is severely compromised. Here we studied the cooperation of Sp1 and its closest paralogue Sp3 in hematopoietic development and demonstrate that Sp1 and Sp3 binding sites largely overlap. Sp3 cooperates with Sp1deltaDBD/deltaDBD but is unable to support hematopoiesis in the complete absence of Sp1. Using single cell gene expression analysis, we show that the lack of Sp1 DNA binding leads to a distortion of cell fate decision timing, indicating that stable chromatin bi nding of Sp1 is required to maintain robust differentiation trajectories. Overall design: RNA-Seq in ESC, Flk, HE1, HE2 and progenitor cells with WT, Sp1deltaDBD or Sp3KO

Publication Title

Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact