Since its discovery as a tumour suppressor some fifteen years ago, the transcription factor p53 has attracted paramount attention for its role as the guardian of the genome. TP53 mutations occur so frequently in cancer, regardless of patient age or tumour type, that they appear to be part of the life history of at least 50% of human tumours. In most tumours that retain wild-type p53, its function is inactivated due to deregulated HDM2, a protein which binds to p53 and which can inhibit the transcriptional activity of p53 and induce its degradation.
Ablation of key oncogenic pathways by RITA-reactivated p53 is required for efficient apoptosis.
Specimen part, Disease
View SamplesTargeting oncogene addiction is a promising strategy for anti-cancer therapy. Here, we report a potent inhibition of crucial oncogenes by p53 upon reactivation with small molecule RITA in vitro and in vivo. RITA-activated p53 unleashes transcriptional repression of anti-apoptotic proteins Mcl-1, Bcl-2, MAP4, and survivin, blocks Akt pathway on several levels and downregulates c-Myc, cyclin E and B-catenin. p53 ablates c-Myc expression via several mechanisms at transcriptional and posttranscriptional level. We show that transrepression of oncogenes correlated with higher level of p53 bound to chromatin-bound p53 than transactivation of pro-apoptotic targets. Inhibition of oncogenes by p53 reduces the cells ability to buffer pro-apoptotic signals and elicits robust apoptosis. Our study highlights the role of transcriptional repression for p53-mediated tumor suppression.
Ablation of key oncogenic pathways by RITA-reactivated p53 is required for efficient apoptosis.
No sample metadata fields
View SamplesGene expression analysis of two different mouse keratinocytes using RNA-Seq Overall design: RNA was collected and analyzed for two biological replicates each from two different mouse keratinocyte cell lines
Evolutionary re-wiring of p63 and the epigenomic regulatory landscape in keratinocytes and its potential implications on species-specific gene expression and phenotypes.
Specimen part, Cell line, Subject
View SamplesAnalysis of gene expression changes during mouse salivary gland development using RNA-Seq Overall design: RNA was collected and analyzed for at least two biological replicates each from six developmental timepoints (E14.5, E16.5, E18.5, P5, 4 weeks, 12 weeks)
RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation.
Age, Specimen part, Cell line, Subject
View SamplesAnalysis of gene-probe expression data (FPKM) for HNSCC cell-lines using single-end RNA-Seq Overall design: RNA was collected and analyzed from 6 HNSCC cell-lines ( SCC15, SCC4, SCC71, UMSCC103, UMSCC29, SCC351)
A global analysis of the complex landscape of isoforms and regulatory networks of p63 in human cells and tissues.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content.
Sex
View SamplesWe hypothesised that SGA as a proxy for intrauterine growth restriction promotes specific epigenetic marks and pathways, whose physiological implications may become apparent only in the fully differentiated state.
ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content.
Sex
View SamplesWe hypothesised that SGA as a proxy for intrauterine growth restriction promotes specific epigenetic marks and pathways, whose physiological implications may become apparent only in the fully differentiated state.
ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content.
Sex
View SamplesWe used microarrays to analyze the gene expression profile of CD34+CD45RA+CD7+, CD34+CD45RA+CD10+CD19- and CD34+CD45+CD7-CD10-CD19- HPCs isolated from umbilical cord blood
Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Molecular pathways reflecting poor intrauterine growth are found in Wharton's jelly-derived mesenchymal stem cells.
Specimen part
View Samples