The transcription factor BATF is required for Th17 and TFH differentiation. Here, we show that BATF also has a fundamental role in regulating effector CD8+ T cell differentiation. BATF-deficient CD8+ T cells show profound defects in effector expansion and undergo proliferative and metabolic catastrophe early after antigen encounter. BATF, together with IRF4 and Jun proteins, binds to and promotes early expression of genes encoding lineage-specific transcription-factors (T-bet and Blimp-1) and cytokine receptors, while paradoxically repressing genes encoding effector molecules (IFNg and granzyme B). Thus, BATF amplifies TCR-dependent transcription factor expression and augments inflammatory signal propagation but restrains effector gene expression. This checkpoint prevents irreversible commitment to an effector fate until a critical threshold of downstream transcriptional activity has been achieved.
The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells.
No sample metadata fields
View SamplesWe exposed a panel of 32 breast cancer cell lines or normal human mammary epithelial cells to 20% or 1% O2 concentration for 24h. Total RNA was extracted from cells using TRIzol (Invitrogen) and treated with DNase I (Ambion). All samples had a RIN value of >9.0 when measured on an Agilent Bioanalyzer. Libraries for RNA-Seq were prepared with KAPA Stranded RNA-Seq Kit. The workflow consisted of mRNA enrichment, cDNA generation, end repair to generate blunt ends, A-tailing, adaptor ligation and 12 cycles of PCR amplification. Unique adaptors were used for each sample in order to multiplex samples into several lanes. Sequencing was performed on Illumina Hiseq 3000/4000 with a 150bp pair-end run. A data quality check was done on Illumina SAV. Demultiplexing was performed with Illumina Bcl2fastq2 v 2.17 program. Overall design: 32 breast cancer cell lines exposedto standard tissue culture conditions normoxic (20% O2) or hypoxic (1% O2) conditions.
Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis.
Cell line, Subject
View SamplesWe designed a novel approach to fate-map hypoxic cells in order to determine their cellular response to physiological O2 gradients. Our system causes a change in the expressing fluorescent protein upon hypoxic exposure (DsRed -> GFP). We generated hypoxia fate-mapping tumors using MDA-MB-231 cells expressing our system. Tumors were resected 2 weeks post-implantation, mechanically disrupted and digested with collagenase to obtain a cell suspension. The cell suspension was enriched using magnetic-activated cell sorting (MACS) and DsRed+ cells were isolated from GFP+ cells by fluorescence-activated cell sorting (FACS) directly into Tris Reagent (Zymo Research). Total RNA was extracted from cells using TRIzol (Invitrogen) and purified using Direct-zol RNA mini kit (Zymo Research) with DNase I treatment. After RNA purification, samples were confirmed to have a RIN value > 9.0 when measured on an Agilent Bioanalyzer. Libraries for RNA-Seq were prepared with KAPA Stranded RNA-Seq Kit. The workflow consisted of mRNA enrichment, cDNA generation, end repair to generate blunt ends, A-tailing, adaptor ligation and 12 cycles of PCR amplification. Unique adaptors were used for each sample in order to multiplex samples into several lanes. Sequencing was performed on Illumina Hiseq 4000 with a 150bp pair-end run. A data quality check was done on Illumina SAV. Demultiplexing was performed with Illumina Bcl2fastq2 v 2.17 program. Overall design: In order to permanently mark hypoxic cells upon exposure to hypoxia, we generated a dual-vector hypoxia fate-mapping system delivered by a lentiviral approcah. Vector 1 expresses a red fluorescent reporter protein (DsRed) with a stop codon flanked by tandem loxP sites (“floxed”) and located in front of a gene encoding a green fluorescent protein (GFP). Vector 2 contains an altered Cre gene modified by the addition of an oxygen-dependent degradation domain (ODD) that is under the transcriptional control of a synthetic HIF-DNA binding sequence (HRE). HIF stabilization causes the activation of vector 2 by binding to hypoxia-dependent DNA response elements (HREs). Vector 2 activation causes the production of a genetically modified Cre protein that is only stable under hypoxia, leading to the cleavage of DsRed and permanent GFP expression. DsRed+ and GFP+ cells were sorted from MDA-MB-231 hypoxia fate-mapping tumors.
Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis.
Cell line, Subject
View SamplesPurpose: identify genes regulated by expression of miR-31 in primary mouse CD8 T-cells by exogenously expressing pre-miR-31 from the Plko.3g lentiviral vector. Cells infected with empty Plko.3g vectors were used as controls for infection.
The microRNA miR-31 inhibits CD8<sup>+</sup> T cell function in chronic viral infection.
Specimen part
View SamplesThe PD-1:PD-L co-inhibitory pathway regulates dysfunctional T cells in chronic viral infection and cancer, but the role of this pathway in effector and memory responses following acute infection or vaccination remains less clear. Here we demonstrated that in the absence of signals from the PD-1 pathway, cell intrinsic alterations during initial CD8+ T cell priming resulted in excessive early CD8+ T cell expansion, but increased CD8+ T cell contraction and aberrant effector to memory CD8+ T cell transition. Overall, our studies revealed a critical and previously unappreciated role for PD-1 as an integrator of early CD8+ T cell activation signals that promoted optimal CD8+ T cell memory formation and durability. This novel PD-1 function has therapeutic implications for the generation of T cell memory during PD-1 cancer immunotherapy and modulation of the PD-1 pathway to enhance immune memory following acute infection or prophylactic vaccination.
The PD-1 Pathway Regulates Development and Function of Memory CD8<sup>+</sup> T Cells following Respiratory Viral Infection.
Specimen part
View SamplesExhausted T cells express multiple co-inhibitory molecules that impair their function and limit immunity to chronic viral infection. Defining novel markers of exhaustion is important both for identifying and potentially reversing T cell exhaustion. Herein, we show that the ectonucleotidse CD39 is a marker of exhausted CD8+ T cells. CD8+ T cells specific for HCV or HIV express high levels of CD39, but those specific for EBV and CMV do not. CD39 expressed by CD8+ T cells in chronic infection is enzymatically active, co-expressed with PD-1, marks cells with a transcriptional signature of T cell exhaustion and correlates with viral load in HIV and HCV. In the mouse model of chronic Lymphocytic Choriomeningitis Virus infection, virus-specific CD8+ T cells contain a population of CD39high CD8+ T cells that is absent in functional memory cells elicited by acute infection. This CD39high CD8+ T cell population is enriched for cells with the phenotypic and functional profile of terminal exhaustion. These findings provide a new marker of T cell exhaustion, and implicate the purinergic pathway in the regulation of T cell exhaustion.
CD39 Expression Identifies Terminally Exhausted CD8+ T Cells.
Specimen part, Subject
View SamplesLong non-coding RNAs (lncRNAs) are a diverse category of transcripts with poor conservation and have expanded greatly in primates, particularly in their brain. We identified a lncRNA, which has acquired 16 microRNA response elements (MREs) for miR-143-3p in the Catarrhini branch of primates. This lncRNA termed LncND (neuro-development) gets expressed in neural progenitor cells and then declines in mature neurons. Binding and release of miR-143-3p, by LncND, can control the expression of Notch. Its expression is highest in radial glia cells in the ventricular and outer subventricular zones of human fetal brain. Down-regulation of LncND in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p over-expression and supported by RNA-seq analysis. These findings support a role for LncND in miRNA-mediated regulation of Notch signaling in the expansion of the neural progenitor pool of primates and hence contributing to the rapid growth of the cerebral cortex. Overall design: Cerebral organoids were generated as in Lancaster et al. (Lancaster and Knoblich, 2014). Organoids were dissociated into single cells and captured on C1 Single-Cell Auto Prep Integrated Fluidic Circuit (IFC) (Fluidigm). The RNA extraction and amplification was performed on the chip as described by the manufacturer. We captured 68 single-cells on a C1 Single-Cell Auto Prep System (Fluidigm) and sequenced the RNA on a NextSeq500 System (Illumina) (Pollen et al., 2014). Out of 68 cells, we obtained 60 high quality cells.
A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reconstructed cell fate-regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis.
Specimen part, Time
View SamplesLong non-coding RNAs (lncRNAs) are a diverse category of transcripts with poor conservation and have expanded greatly in primates, particularly in their brain. We identified a lncRNA, which has acquired 16 microRNA response elements (MREs) for miR-143-3p in the Catarrhini branch of primates. This lncRNA termed LncND (neuro-development) gets expressed in neural progenitor cells and then declines in mature neurons. Binding and release of miR-143-3p, by LncND, can control the expression of Notch. Its expression is highest in radial glia cells in the ventricular and outer subventricular zones of human fetal brain. Down-regulation of LncND in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p over-expression and supported by RNA-seq analysis. These findings support a role for LncND in miRNA-mediated regulation of Notch signaling in the expansion of the neural progenitor pool of primates and hence contributing to the rapid growth of the cerebral cortex. Overall design: SHSY5Y cells treated either with miR-143-3p mimic or 100 nM of siRNA specific for LncND were sequenced on NextSeq500 platform. Scrambled siRNA or miRNA sequences were used as a negative control.
A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA.
No sample metadata fields
View SamplesWe have integrated dynamic RXRa binding, chromatin accessibility and promoter epigenetic status with the transcriptional activity inferred from RNA polymerase II mapping and transcription profiling. This demonstrated a temporal organization structure, in which early events are preferentially enriched for common GRNs, while cell fate specification is reflected by the activation of late programs in a cell-type specific manner. Furthermore, significant differences in cell lines' promoter status of genes associated with cell-line specific programs were inferred. Finally, a variety of transcription factors (TFs) playing a direct role in the signal transduction cascade downstream of the RXR/RAR initiated wiring were identified, several of them commonly regulated in both model systems, but in addition cell-type specific TF drivers were also identified.
Reconstructed cell fate-regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis.
Specimen part, Time
View Samples