We aimed to characterize the complex cardiovascular effects of NOsGC stimulation using NO-independent stimulator BAY 41-8543 in a double transgenic rat (dTGR) model of HFpEF.
Nitric oxide-sensitive guanylyl cyclase stimulation improves experimental heart failure with preserved ejection fraction.
Sex, Specimen part, Treatment
View SamplesAllyl alcohol is a highly toxic industrial chemical used as a synthetic substrate, and as an herbicide in agriculture. It is evident that Allyl alcohol is metabolized by alcohol dehydrogenases (ADH) to the highly toxic Acrolein. Acrolein is a simple unsaturated aldehyde, ubiquitous environmental pollutant, endogenous metabolite and major constituent of cigarette smoke. Acrolein is highly electrophilic in nature and has strong reactivity towards nucleophiles present in cell such as amino acids, proteins and DNA.
Molecular cytotoxicity mechanisms of allyl alcohol (acrolein) in budding yeast.
No sample metadata fields
View SamplesValproic acid (VA) is a small-chain branched fatty acid, widely used as anticonvulsant, and mood stabilizer to treat psychiatric illness. Valproic acid is also known to inhibit the histone deacetylases (HDACs), which makes it as a potent antitumor agent in alone or in combination with other cytotoxic drugs. Beside its conventional activities, valproic acid reported to have much broader, complicated effects and affect many complex physiological processes. However the molecular mechanisms of valproic acid are unclear.
Combined Transcriptomics and Chemical-Genetics Reveal Molecular Mode of Action of Valproic acid, an Anticancer Molecule using Budding Yeast Model.
No sample metadata fields
View SamplesKP1019 (trans-[tetrachlorobis(1H-indazole) ruthenate(III)]) is a ruthenium complex that exhibited anti-cancer activity in several in vitro and in vivo studies. KP1019 was even efficient against cancer cells that were resistant to other chemotherapeutic agents and thus emerged as a promising anti-cancer drug without dose-limiting cytotoxicity. However, the molecular mechanisms of its action are elusive.
A systematic assessment of chemical, genetic, and epigenetic factors influencing the activity of anticancer drug KP1019 (FFC14A).
No sample metadata fields
View SamplesMale and female CD-1 mice were administered dietary Phenobarbital for 2 or 7 days. In-life, enzyme activity, cell proliferation, genomic analysis, and Bench-mark dose modeling was carried out.
Dose-response modeling of early molecular and cellular key events in the CAR-mediated hepatocarcinogenesis pathway.
Specimen part
View SamplesIn this study we used microarrays to examine relative genes expression within the aorta of ApoE-/- infused with angiotensin II in relation to aneurysm formation. Infusion of angiotensin II induces aortic dilatation particularly of the suprarenal aorta in ApoE-/- mice. Based on studies carried out in our and other laboratories the response to angiotensin II is variable, with some mice developing large aneurysms but other animals appearing resistant to aneurysm formation with aortic diameters similar to that of saline controls. We compared RNA expression from whole aortas of 17 week old male ApoE-/- mice exposed to angiotensin II (1.44 g/kg/min) for 4 weeks where there was clear evidence of aortic aneurysm formation (n=5) with that of mice failing to develop aneurysms (n=7) and those exposed to saline infusion (n=6). AAA was defined as diameter of suprarenal aorta greated than 1.5mm measured on photographs of aortas at necroscopy.
Whole genome expression analysis within the angiotensin II-apolipoprotein E deficient mouse model of abdominal aortic aneurysm.
No sample metadata fields
View SamplesIn Saccharomyces cerevisiae, Sen1 is a 252-kDa, nuclear superfamily-1 RNA/DNA helicase that encoded by an essential gene SEN1 (Senataxin). It is an important component of the Nrd1p-Nab3p-Sen1p (NRD1) complex that regulates the transcriptional termination of most non-coding and some coding transcripts at RNA polymerase pause sites. Sen1 specifically interacts with Rnt1p (RNase III), an endoribonuclease, and with Rpb1p (Rpo21p), a subunit of RNA polymerase II, through its N-terminal domain (NTD), which is a critical element of the RNA-processing machinery. Moreover, mutations in the N-terminal tail of SETX, a human ortholog of yeast Senataxin (Sen1) reported in neurological disorders.
Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae.
No sample metadata fields
View SamplesSustained caloric restriction (CR) extends lifespan in animal models but the mechanism and primary tissue target(s) have not been identified. Gene expression changes with aging and CR were examined in both heart and subcutaneous white adipose tissue (WAT) of F344 male rats using Affymetrix RAE 230 arrays and validated by qRT-PCR on 18 genes. In heart, age- associated changes but not CR-associated changes in old. In WAT, genes were identified where the aging change is suppressed by CR (candidate markers of healthy aging) and those affected by CR but not normal aging (candidate longevity assurance genes). 10-21% of age-associated genes were regulated in common between tissues. Gene set enrichment analysis (GSEA) revealed coordinate small magnitude changes in ribosomal, proteasomal, and mitochondrial genes with similarities between heart and WAT. Further analysis revealed PPARgamma as a potential upstream regulator of altered gene expression in old CR WAT. These results demonstrate a reduced mRNA response to CR with age in heart relative to WAT. In WAT, we identified candidate CR mimetic targets and candidate markers of healthy aging. These data suggest a role for subcutaneous WAT in the effects of CR and strengthen the role for PPAR signaling in aging and CR while indicating that the effects of CR in heart can occur independent of global changes in mRNA level.
Transcriptional response to aging and caloric restriction in heart and adipose tissue.
No sample metadata fields
View SamplesThe aim of this study was to assess the relative gene expression in human AAA and AOD.
Differential gene expression in human abdominal aortic aneurysm and aortic occlusive disease.
Specimen part, Disease, Disease stage
View SamplesThe pathognomonic EWS/ETS fusion transcription factors drive Ewing sarcoma (EWS) by orchestrating an oncogenic transcription program. Therapeutic targeting of EWS/ETS has not been successful; therefore identifying mediators of the EWS/ETS function could offer new therapeutic targets. Here we describe the dependency of chromatin reader BET bromodomain proteins in EWS/ETS driven transcription and investigate the potential of BET inhibitors in treating this lethal cancer. Similar to EWS/ETS fusions, knockdown of BET proteins BRD2/3/4 severely impaired the oncogenic phenotype of EWS cells. Notably, EWS/FLI1 and EWS/ERG was found to be in a transcriptional complex consisting of BRD4. RNA-Seq analysis upon BRD4 knockdown or its pharmacologic inhibition by the BET inhibitor JQ1 revealed an attenuated EWS/ETS transcriptional signature. In contrast to other reports, JQ1 reduced proliferation, and induced apoptosis through MYC-independent mechanism without affecting EWS/ETS protein levels, which was further confirmed by depleting BET proteins using PROTAC-BET degrader (BETd). Interestingly, polycomb repressive complex 2 (PRC2) associated factor PHF19 was downregulated by JQ1/BETd or BRD4 knockdown in multiple EWS cells. ChIP-seq analysis revealed occupancy of EWS/FLI1 at a distal regulatory element of PHF19 and its subsequent knockdown resulted in downregulation of PHF19 expression. Furthermore, deletion of PHF19 by CRISPR-Cas9 system lead to a decreased tumorigenic phenotype and increased sensitivity to JQ1. Importantly, PHF19 expression was associated with worse prognosis of Ewing sarcoma patients. In vivo, JQ1 demonstrated anti-tumor efficacy in multiple mouse xenograft models of EWS. Together, these results indicate that EWS/ETS require BET epigenetic reader proteins for its transcriptional program including PHF19 expression, which can be mitigated by BET inhibitors. Moreover, this study provides a clear rationale for the clinical utility of BET inhibitors in treating Ewing sarcoma. Overall design: Gene epxression by RNAseq in the ewing sarcoma cell lines with knockdown of EWS-FLI1, BRD4 or JQ1 treament, knockout of PHF19
EWS/ETS-Driven Ewing Sarcoma Requires BET Bromodomain Proteins.
Specimen part, Cell line, Treatment, Subject
View Samples